TURBULENCE APPEARANCE AT THE BOTTOM OF A SOLITARY WAVE

Paolo Blondeaux, Jan Pralits, Giovanna Vittori

Abstract


The conditions leading to transition and turbulence appearance at the bottom of a solitary wave are determined by means of a linear stability analysis of the laminar flow in the bottom boundary layer. The ratio between the wave amplitude and the thickness of the viscous bottom boundary layer is assumed to be large and a 'momentary' criterion of instability is used. The results obtained show that the laminar regime becomes unstable, during the decelerating phase, if the height of the wave is larger than a threshold value which depends on the ratio between the boundary layer thickness and the local water depth. A comparison of the theoretical results with the experimental measurements of Sumer et al. (2010) seems to support the stability analysis.

Keywords


boundary layer stability; solitary waves; turbulence

References


Blondeaux, P. 1987 Turbulent boundary layer at the bottom of gravity waves. J. Hydraulic Res., 25 (4), 447-464.http://dx.doi.org/10.1080/00221688709499262

Blondeaux, P., Pralits J. & Vittori, G. 2012 Transition to turbulence at the bottom of a solitary wave J. Fluid Mech. DOI: http://dx.doi.org/10.1017/jfm.2012.341

Blondeaux, P. & Seminara, G. 1979 Transizione incipiente al fondo di un'onda di gravita.´ Acc. Naz. Lincei, 67, 408-411, (italian)

Blondeaux, P. & Vittori, G. 1994 Wall imperfections as a triggering mechanism for Stokes-layer transition. J. Fluid Mech., 264, 107-135.http://dx.doi.org/10.1017/S0022112094000601

Blondeaux, P. & Vittori, G. 1999 Boundary layer and sediment dynamics under sea waves. Adv. Coastal and Ocean Eng., 4, 133-190.http://dx.doi.org/10.1142/9789812797551_0004

Blondeaux, P. & Vittori, G. 2011 RANS modelling of the turbulent boundary layer under a solitary wave. Coastal Eng. in press, http://dx.doi.org/10.1016/j.coastaleng.2011.07.005

Bogucki, D.J. & Redekopp, L.G 1999 A mechanism for sediment resuspension by internal solitary waves. Geophys. Res. Letters, 26 (9), 1317-1320.http://dx.doi.org/10.1029/1999GL900234

Conrad, P.W. & Criminale, W.O. 1965 The stability of time-dependent laminar flows. Z. Angew. Math. Phys., 16, 233-254.http://dx.doi.org/10.1007/BF01587649

Costamagna, P., Vittori, G. & Blondeaux, P. 2003 Coherent structures in oscillatory boundary layers. J. Fluid Mech., 474, 1-33.http://dx.doi.org/10.1017/S0022112002002665

Fredsoe, J. & Deigaard, R. 1992 Mechanics of coastal sediment transport. Adv. Series on Ocean Engineering, 3, World Scientific.

Grimshaw, R. 1971. The solitary wave in water of variable depth. Part 2. J. Fluid Mech., 46 (3), 661-622.http://dx.doi.org/10.1017/S0022112071000739

Huerre, P. & Monkewitz, P.A. 1990. Local and global instabilities in spatially developing flows. Annu. Rev. Fluid Mech., 22, 473-537.http://dx.doi.org/10.1146/annurev.fl.22.010190.002353

Liu, P.L.F. & Orfilia, A. 2004 Boundary layer hydrodynamics and bed load sediment transport in oscillating water tunnels. J. Fluid Mech., 520, 83-92.http://dx.doi.org/10.1017/S0022112004001806

Liu, P.L.F., Park, Y.S. & Cowen, E.A. 2007 Boundary layer flow and bed shear stress under a solitary wave. J. Fluid Mech., 574, 449-463.http://dx.doi.org/10.1017/S0022112006004253

Mazzuoli, M., Vittori, G. & Blondeaux, P. 2011 Turbulent spots in oscillatory boundary layers. J. Fluid Mech., 685, 365-376, doi:10.1017/jfm.2011.320.http://dx.doi.org/10.1017/jfm.2011.320

PMid:22041184 PMCid:3286677

Mei, C.C. 1989 The applied dynamics of ocean surface waves. Adv. Series on Ocean Eng., 1, World Scientific

Shen, S.F. 1961 Some considerations on the laminar stability of incompressible time-dependent basic flows. J. Aerospace Sci., 28, 397-404 and 417

Sumer, B.M., Jensen P.M., Sorensen, L.B., Fredsoe, J., Liu, P.L.F. & Carstensen, S. 2010 Coherent structures in wave boundary layers. Part 2. Solitary motion. J. Fluid Mech., 646, 207-231.http://dx.doi.org/10.1017/S0022112009992837

Tanaka, H., Sumer, B.M. & Lodahl, C. 1998 Theoretical and experimental investigation on laminar boundary layers under cnoidal wave motion. Coastal Eng. J., 40 (1), 81-98.http://dx.doi.org/10.1142/S0578563498000066

Verzicco, R. & Vittori, G. 1996 Direct simulation of transition in Stokes layers. Phys. Fluids, 8 (6), 1341-1343.http://dx.doi.org/10.1063/1.868940

Vittori, G. 2003 Sediment suspension due to waves. J. Geophys. Res. Oceans, 108 (C6), 3173, 4-1/4-17.

Vittori, G. & Blondeaux, P. 2008 Turbulent boundary layer under a solitary wave. J. Fluid Mech., 615, 433-443.http://dx.doi.org/10.1017/S0022112008003893

Vittori, G. & Blondeaux, P. 2011 Characterstics of the boundary layer at the bottom of a solitary wave. Coastal Eng., 58 (2), 206-213.http://dx.doi.org/10.1016/j.coastaleng.2010.09.005

Vittori, G. & Verzicco, R. 1998 Direct simulation of transition in an oscillatory boundary layer. J. Fluid Mech., 371, 207-232.http://dx.doi.org/10.1017/S002211209800216X

Talmon, A.M., Struiksma, N. & Van Mierlo, M.C.L.M. 1995 Laboratory measurements of the direction of sediment transport on transverse alluvial-bed slopes. J. Hydr. Res., 33, 495–517.http://dx.doi.org/10.1080/00221689509498657


Full Text: PDF

Creative Commons License
This work is licensed under a Creative Commons Attribution 3.0 License.