NUMERICAL MODELING OF COASTAL TSUNAMI IMPACT DISSIPATION AND IMPACT

Stephan T. Grilli, Jeffrey C. Harris, Fengyan Shi, James T. Kirby, Tayebeh S. Tajalli Bakhsh, Elise Estibals, Babak Tehranirad

Abstract


Recent observations of the coastal impact of large tsunamis (e.g., Indian Ocean 2004; Tohoku 2011) and related numerical and theoretical works have made it increasingly clear that tsunami waves arrive nearshore as a series of long waves (so-called N-waves) with, often, the superposition of undular bores around each crest. Such wave trains are much more complex and very much in contrast with the solitary wave paradigm which for a long time was the accepted idealization of tsunami waves in both experimental and numerical work. The dissipation associated with these breaking bores can be very large, particularly over a wide and shallow continental shelf such as along the east coast of North America, particularly for the shorter waves associated with tsunamis generated by Submarine Mass Failures (SMFs). In this paper, we perform numerical simulations of tsunami coastal impact in the context of both idealized laboratory experiments and several tsunami case studies. We attempt to clarify the key physical processes at play in such cases, and discuss the parameterization of long wave dissipation and implications for models of coastal tsunami hazard assessment.

Keywords


tsunami modeling; coastal tsunami hazard; submarine mass failure; wave breaking; undular bore

References


Abadie S., C. Gandon, S.T. Grilli, R. Fabre, J. Riss, E. Tric, D. Morichon, and S. Glockner. 2009. 3D Numerical Simulations of Waves Generated by Subaerial Mass Failures. Application to La Palma Case. In Proc. 31st Intl. Coastal Engng. Conf. (J. Mc Kee Smith, ed.) (ICCE08, Hamburg, Germany, September, 2008), pps. 1,384-1,395. World Scientific Publishing Co. Pte. Ltd.http://dx.doi.org/10.1142/9789814277426_0115

Abadie S., J. C. Harris and S.T. Grilli. 2011. Numerical simulation of tsunami generation by the potential flank collapse of the Cumbre Vieja Volcano. Proceedings of the 21st Offshore and Polar Engng. Conf. (ISOPE11, Maui, HI, USA, June 19-24, 2011), 687-694.

Abadie S., J.C. Harris, S.T. Grilli, and R. Fabre. 2012. Numerical modeling of tsunami waves generated by the flank collapse of the Cumbre Vieja Volcano (La Palma, Canary Islands): tsunami source and near field effects. J. Geophys. Res., 117, C05030.http://dx.doi.org/10.1029/2011JC007646

Chen Q., J.T. Kirby, R.A. Dalrymple, A. Kennedy, and A. Chawla. 2000. Boussinesq modeling of wave transformation, breaking and runup II: 2D. J. Waterway, Port, Coast. Oc. Engng., 126, 48- 56.

Enet F., and S.T. Grilli. 2007. Experimental study of tsunami generation by three-dimensional rigid underwater landslides. J. Waterway, Port, Coast. Oc. Engng., 133, 422-454.

Geist E., P. Lynett, and J. Chaytor. 2009. Hydrodynamic modeling of tsunamis from the Currituck landslide. Marine Geology, 264, 41-52.http://dx.doi.org/10.1016/j.margeo.2008.09.005

Grilli S.T., J. Skourup, and I.A. Svendsen. 1989. An Efficient Boundary Element Method for Nonlinear Water Waves. Engineering Analysis with Boundary Elements, 6(2), 97-107.http://dx.doi.org/10.1016/0955-7997(89)90005-2

Grilli S.T. and R. Subramanya. 1996. Numerical Modeling of Wave Breaking Induced by Fixed or Moving Boundaries. Computational Mech., 17(6), 374-391.http://dx.doi.org/10.1007/BF00363981

Grilli S.T. and P. Watts. 2005. Tsunami generation by submarine mass failure. Part I: Modeling, experimental validation, and sensitivity analysis. J. Waterway, Port, Coast. Oc. Engng., 131, 283- 297.

Grilli S.T., M. Ioualalen, J. Asavanant, F. Shi, J. Kirby, and P. Watts. 2007. Source Constraints and Model Simulation of the December 26, 2004 Indian Ocean Tsunami. J. Waterway, Port, Coast. Oc. Engng., 133(6), 414-428.

Harris J.C., S.T. Grilli, S. Abadie, and T. Tajalli Bakhsh. 2012. Near- and far-field tsunami hazard from the potential flank collapse of the Cumbre Vieja Volcano. Proceedings of the 22nd Offshore and Polar Engng. Conf. (ISOPE12, Rodos, Greece, June 17-22, 2012), 8 pp. Ioualalen M., J. Asavanant, N. Kaewbanjak, S.T.Grilli, J.T. Kirby and P. Watts. 2007. Modeling the 26th December 2004 Indian Ocean tsunami: Case study of impact in Thailand. J. Geophys. Res., 112, C07024, doi:10.1029/2006JC003850http://dx.doi.org/10.1029/2006JC003850

Kennedy A., Q. Chen, J.T. Kirby, and R.A. Dalrymple. 2000. Boussinesq modeling of wave transformation, breaking, and runup I: 1D. J. Waterway, Port, Coast. Oc. Engng., 126, 39-47.

Kim D.-H. and P. J. Lynett. 2011. Dispersive and non-hydrostatic pressure effects at the front of surge. J. Hydraulic Engng., 137, 754-765.http://dx.doi.org/10.1061/(ASCE)HY.1943-7900.0000345

Kirby J.T., F. Shi, J.C. Harris, and S.T. Grilli. 2012. Sensitivity analysis of trans-oceanic tsunami propagation to dispersive and Coriolis effects. Ocean Modeling (in revision), 42 pp.

Locat J., H. Lee, U. ten Brink, D. Twichell, E. Geist, and M. Sansoucy. 2009. Geomorphology,stability, and mobility of the Currituck slide. Marine Geology, 264, 28-40.http://dx.doi.org/10.1016/j.margeo.2008.12.005

Løvholt F., G. Pedersen, and G. Gisler 2008. Oceanic propagation of a potential tsunami from the La Palma Island. J. Geophys. Res., 113, C09026, doi:10.1029/2007JC004603.http://dx.doi.org/10.1029/2007JC004603

Lynett P. and P.-F. Liu 2008. Modeling wave generation, evolution, and interaction with depthintegrated, dispersive wave equations COULWAVE code manual. Cornell University Long and Intermediate Wave Modeling Package.

Ma G., F. Shi, and J.T. Kirby. 2012. Shock-capturing non-hydrostatic model for fully dispersive surface wave processes. Ocean Modelling, 43-44, 22-35.http://dx.doi.org/10.1016/j.ocemod.2011.12.002

Madsen P.A., D.R. Fuhrman and H. A. Schaffer. 2008. On the solitary wave paradigm for tsunamis. J. Geophys. Res., 113, C12012, 22 pp.

Pérignon, Y. 2006. Tsunami hazard modeling, MSc thesis, Univ. of Rhode Island, Narragansett, RI.

Shi F., Q. Zhao, J.T. Kirby, D.S. Lee and S.N. Seo. 2004. Modeling of wave interaction with complex coastal structures using an enhanced VOF model. Proc. 29th Intl. Conf. on Coastal Engng., 581- 593.

Shi F., J.T. Kirby, J.C. Harris, J.D. Geiman and S.T. Grilli. 2012. A High-Order Adaptive Time- Stepping TVD Solver for Boussinesq Modeling of Breaking Waves and Coastal Inundation. Ocean Modeling, 43-44, 36-51, doi:10.1016/j.ocemod.2011.12.004.http://dx.doi.org/10.1016/j.ocemod.2011.12.004

Tappin D.T., P. Watts and S.T. Grilli. 2008. The Papua New Guinea tsunami of 1998: anatomy of a catastrophic event. Natural Hazards and Earth Syst. Sc., 8, 243-266.http://dx.doi.org/10.5194/nhess-8-243-2008

Tehranirad B., F. Shi, J.T. Kirby, J. C. Harris, and S.T. Grilli. 2011. Tsunami benchmark results for fully nonlinear Boussinesq wave model FUNWAVE-TVD, Version 1.0. Technical report CACR- 11-02, Center for Applied Coastal Research, University of Delaware.

Tissier M., P. Bonneton, F. Marche, F. Chazel and D. Lannes. 2012. A new approach to handle wave breaking in fully non-linear Boussinesq models. Coastal Engng., 67, 54-66.http://dx.doi.org/10.1016/j.coastaleng.2012.04.004

Tonelli M. and M. Petti. 2009. Hybrid finite volume – finite difference scheme for 2DH improved Boussinesq equations. Coastal Engng., 56, 609-620.http://dx.doi.org/10.1016/j.coastaleng.2009.01.001

Ward S.N. and S. Day. 2001. Cumbre Vieja Volcano – potential collapse and tsunami at La Palma, Canary Islands. Geophys. Res. Lett., 21, 397-400.

Watts P., S.T. Grilli, J.T. Kirby, G.J. Fryer, and D. R. Tappin, 2003. Landslide tsunami case studies using a Boussinesq model and a fully nonlinear tsunami generation model. Natural Hazards and Earth Syst. Sc., 3, 391-402.http://dx.doi.org/10.5194/nhess-3-391-2003

Watts P., S.T. Grilli, D. Tappin, and G.J. Fryer. 2005. Tsunami generation by submarine mass failure. Part II: Predictive equations and case studies. J. Waterway, Port, Coast. Oc. Engng., 131, 298- 310.

Wei G., and J.T. Kirby. 1995. A time-dependent numerical code for extended Boussinesq equation. J. Waterway, Port, Coast. Oc. Engng., 120, 251-261.

Wei G., J.T. Kirby, S.T. Grilli, and R. Subramanya, 1995. A Fully Nonlinear Boussinesq Model for Surface Waves. Part1. Highly Nonlinear Unsteady Waves. J. Fluid Mech., 294, 71-92.http://dx.doi.org/10.1017/S0022112095002813


Full Text: PDF

Creative Commons License
This work is licensed under a Creative Commons Attribution 3.0 License.