SEDIMENT TRANSPORT AT THE BOTTOM OF SEA WAVES
ICCE 2012 Cover Image
PDF

Keywords

sea waves
steady streaming
turbulence modeling
sediment transport

How to Cite

Vittori, G., & Blondeaux, P. (2012). SEDIMENT TRANSPORT AT THE BOTTOM OF SEA WAVES. Coastal Engineering Proceedings, 1(33), sediment.47. https://doi.org/10.9753/icce.v33.sediment.47

Abstract

The flow in the wall boundary layer generated close to the sea bottom by the propagation of a monochromatic surface wave is determined by considering small values of both the wave steepness and the ratio between the thickness of the boundary layer and the local water depth. Depending on the hydrodynamic conditions, the sea bottom can be plane or rippled. The geometrical characteristics of the bottom forms are predicted using empirical formulae and, then, the bedforms are assumed to behave as a bottom roughness, the size of which is related to the size of the ripples. The bottom boundary layer is assumed to be turbulent and the flow field is computed by means of a two-equation turbulence model. Then the sediment transport is evaluated. The bed load is obtained using an empirical relationship. The suspended load is determined by computing the sediment flux, once the spatial and temporal distribution of sediment concentration is determined. A comparison of the model findings with the experimental results supports the approach.
https://doi.org/10.9753/icce.v33.sediment.47
PDF

References

Blondeaux P. and Colombini M. 1985. Pulsatile turbulent pipe flow. Proceedings 5th International Symposium on Turbulent Shear Flows Ithaca (NY) (ed. J. L. Lumley, B. E. Launder, N. C. Reynolds & J. A. Whitelaw).

Blondeaux, P. 1987 Turbulent boundary layer at the bottom of gravity waves. J. Hydraul. Res. 25 (4), 447-464.http://dx.doi.org/10.1080/00221688709499262

Blondeaux, P. & Vittori, G. 1991a Vorticity dynamics in an oscillatory flow over a rippled bed. J. Fluid Mech. 226, 257-289.http://dx.doi.org/10.1017/S0022112091002380

Blondeaux, P. & Vittori, G. 1991b A route to chaos in an oscillatory flow: Feigenbaum scenario. Phys. Fluids A 3, 2492-2495.http://dx.doi.org/10.1063/1.858191

Blondeaux, P., Vittori, G. & Foti, E. 2000 Migrating sea ripples. Eur. J. Mech. (B/Fluids) 19, 285-301.

Blondeaux P., Vittori G., Bruschi A., Lalli F. and Pesarono V. 2012. Steady streaming and sediment transport at the bottom of sea waves. Journal of Fluid Mechanics, 697,115-149http://dx.doi.org/10.1017/jfm.2012.50

doi:10.1017/jfm.2012.50

Collins, J. I. 1963 Inception of turbulence at the bed under periodic gravity waves. J. Geophys. Res. 68, 6007-6014.http://dx.doi.org/10.1029/JZ068i021p06007

Chowdhury, S. A., Sato, M. & Ueno, A. 1997 Numerical model of the turbulent wave boundary layer induced by finite amplitude water waves. Appl. Ocean Res. 19, 201-209.http://dx.doi.org/10.1016/S0141-1187(97)00025-4

Collins, J. I. 1963 Inception of turbulence at the bed under periodic gravity waves. J. Geophys. Res. 68, 6007-6014.http://dx.doi.org/10.1029/JZ068i021p06007

Fredsoe J. and Deigaard R. 1992. Mechanics of Coastal Sediment Transport. Advance Series on Ocean Engineering, vol. 3, World Scientific.

Gonzalez-Rodriguez, D. & Madsen, O. S. 2011 Boundary layer hydrodynamics and bed load sediment transport in oscillating water tunnels. J. Fluid Mech. 667, 48-84.http://dx.doi.org/10.1017/S0022112010004337

Hsu, T. W. & Ou, S. H. 1994 On the mass transport of water waves. Ocean Engng 21 (2), 195-206.http://dx.doi.org/10.1016/0029-8018(94)90038-8

Justesen, P. A. 1988 Prediction of turbulent oscillatory flow over rough beds. Coastal Engineering 12, 257-284.http://dx.doi.org/10.1016/0378-3839(88)90008-7

Kajiura, K. 1968 A model of the bottom boundary layer in water waves. Bull. Earthq. Res. Inst. 46, 75-123.

Longuet-Higgins, M. S. 1953. Mass transport in water waves. Phil. Trans. R. Soc. Lond. A 245, 535-581.http://dx.doi.org/10.1098/rsta.1953.0006

Longuet-Higgins, M. S. 1958 The mechanism of the boundary layer near the bottom in a progressive wave. In Proceedings of the 6th International Conference on Coastal Engineering, Berkeley (CA), ASCE, 184-193.

Mei, C. C. 1989. The Applied Dynamics of Ocean Surface Waves. Advanced Series on Ocean Engineering, vol. 1, World Scientific.

Saffman P.G. 1970. A model for inhomogeneous turbulent flow. Proc. R. Soc. Lond. A 317, 417-433.http://dx.doi.org/10.1098/rspa.1970.0125

Saffman P. G. and Wilcox P. C. 1974. Turbulence model predictions for turbulent boundary layers. AIAA J. 12, 541-546.http://dx.doi.org/10.2514/3.49282

Scandura P. and Foti E. 2011. Measuerements of wave-induced steady currents outside the surf zone. Journal of Hydraulic Research, 49, 64-71http://dx.doi.org/10.1080/00221686.2011.591046

Sleath J.F.A, 1984. Sea bed mechanics. Wiley

Schretlen, J. J. L. M., Ribberink, J. S. & O'Donoghue, T. 2010. Boundary layer flow and sand transport under full scale surface waves. In Proceedings of the 32nd International Conference on Coastal Engineering, Shangai 2010 (ed. J. M. Smith & P. Lynett). Coastal Engineering Research Council.

Soulsby R.L., Whitehouse R.J.S. 2005. Prediction of ripple properties in shelf seas. Report TR150. HR Wallingford.

Trowbridge, J. & Madsen, O. S. 1984a Turbulent wave boundary layers. 1. Model formulation and first-order solution. J. Geophys. Res. 89 (C5), 7989-7997.http://dx.doi.org/10.1029/JC089iC05p07989

Trowbridge J. & Madsen O. S. 1984b. Turbulent wave boundary layers. 2. Second-order theory and mass-transport. J. Geophys. Res. 89 (C5), 7999-8007.http://dx.doi.org/10.1029/JC089iC05p07999

Van Der Werf, J. J., Schretlen, J. J. L. M., Ribberink, J. S. & O'Donoghue, T. 2009. Database of fullscale laboratory experiments on wave-driven sand transport processes. Coastal Engineering 56 (7), 726-732.http://dx.doi.org/10.1016/j.coastaleng.2009.01.008

Van Doorn, T. 1981 Experimental investigation of near-bottom velocities in water waves with and without a current. Rep. MI. 423 Delft Hydraulics Lab.

Van Rijn L. 1991. Sediment transport in combined waves and currents. Proceedings Euromech 262 Colloquium Sand Transport in Rivers, Estuaries and the Sea, Wallingford (UK) (ed. R. Soulsby & R. Bettess). A.A. Balkema.

Vittori G. and Blondeaux P. 1996 Mass transport under sea waves propagating over a rippled bed. J. Fluid Mech. 314, 247-265.http://dx.doi.org/10.1017/S0022112096000304

Zyserman, J. A. and Fredsoe J. 1994. Data analysis of bed concentration of suspended sediment.

Authors retain copyright and grant the Proceedings right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this Proceedings.