SIMULTANEOUS SURFACE AND SUBSURFACE AIR AND WATER FLOWS MODELLING IN THE SWASH ZONE

Jonathan Desombre, Denis Morichon, Mathieu Mory

Abstract


This study presents the results of the numerical simulation of a bore-driven swash flow over a permeable coarse- grained beach, carried out using the THETIS code. This code, based on a VOF-RANS approach, was previously used to simulate the swash flow over an impermeable beach (Desombre et al. 2013). For the present study, the code is extended to account for infiltration and exfiltration into a permeable immobile beach using the Volume-Averaged momentum equation that solves simultaneously the surface and subsurface flows. The results are compared with a laboratory data set from an experiment performed in the swash facility of the University of Aberdeen (Steenhauer et al. 2011). Comparisons between measurements and model results show the ability of the model to simulate the main features of subsurface flow during an entire swash cycle.

Keywords


swash zone; porous media; groundwater; subsurface; numerical modelling; 1-fluid; VOF

References


Bakhtyar, R., A. Brovelli, D.A. Barry and L. Li . 2011. Wave-induced water table fluctuations, sediment transport and beach profile change: Modeling and comparison with large-scale laboratory experiments . Coastal Engineering, 58, 103-118.http://dx.doi.org/10.1016/j.coastaleng.2010.08.004

Butt, T., P.E. Russel, and I.L. Turner. 2001. The influence of swash infiltration-exfiltration on beach face sediment transport: onshore or offshore ?, Coastal Engineering, 42, 35-52.http://dx.doi.org/10.1016/S0378-3839(00)00046-6

Desombre, J., M. Morichon, and M. Mory. 2013. RANS v²–f simulation of a swash event: Detailed flow structure, Coastal Engineering, 71, 1-12.http://dx.doi.org/10.1016/j.coastaleng.2012.07.001

Goda, K. 1978. A multistep technique with implicit difference schemes for calculating two- or threedimensional cavity flows. Journal of Computational Physics, 30, 76-95.http://dx.doi.org/10.1016/0021-9991(79)90088-3

Higuera, P., J.L. Lara, M. del Jesus, I.J. Losada, Y. Guanche and G. Barajas. 2011. Numerical simulation of three dimensional breaking waves on a gravel slope using two-phase flow Navier-Stokes model. Proceeding of 5th International Conference on Advanced COmputational Methods in ENgineering (ACOMEN), 10 pp.

Hoque, Md. and T. Asano, 2007. Numerical study on wave-induced filtration flow across the beach face and its effects on swash zone sediment transport. Ocean Engineering, 34, 2033-2044.http://dx.doi.org/10.1016/j.oceaneng.2007.02.004

Horn, D. 2006. Measurement and modelling of beach groundwater flow in the swash-zone: a review, Continental Shelf Research, 26, 622-652.http://dx.doi.org/10.1016/j.csr.2006.02.001

Hsu, T.J., T. Sakakiyama and P.L.F. Liu. 2002. A numerical model for wave motions and turbulence flows in front of a composite breakwater. Coastal Engineering, 46, 25-50.http://dx.doi.org/10.1016/S0378-3839(02)00045-5

Karambas, T.V. 2003. Modelling infiltration-exfiltration effects on cross-shore sediment transport in the swash zone. Coastal Engineering Journal, 45, 63-82.http://dx.doi.org/10.1142/S057856340300066X

Karambas, T.V. 2006. Prediction of sediment transport in the swash zone by using a nonlinear wave model. Continental Shelf Research, 26, 599-609.http://dx.doi.org/10.1016/j.csr.2006.01.014

Lara, J., I.J. Losada, M. del Jesus, G. Barajas and R. Guanche. 2010. IH-3VOF: A three-dimensional Navier-Stokes model for wave and structure interaction. Proceedings of 32th the International Conference on Coastal Engineering.

Li, L., D.A Barry, C.B Pattiaratchi and G. Masselink. 2002. BeachWin: modeling groundwater effects on swash sediment transport and beach profile changes. Environ. Model. Softw. 17, 313-320.http://dx.doi.org/10.1016/S1364-8152(01)00066-4

Mory, M., Abadie, S. Mauriet, and P. Lubin. 2011. Run-up flow of a collapsing bore over a beach, European Journal of Mech. B/Fluids, 30, 565-576.http://dx.doi.org/10.1016/j.euromechflu.2010.11.005

Nield, D.A. 1991. The limitations of the Brinkman-Forchheimer equation in modeling flow in saturated porous medium and at interface. Int. J. Heat and Fluid Flow, 12, 269-272.http://dx.doi.org/10.1016/0142-727X(91)90062-Z

Nield, D. A. and A. Bejan. 2006. Convection in Porous Media, SPRINGER, 3rd ed.

O'Donoghue, T., D. Pokrajac and L.J. Hondebrink. 2010. Laboratory and numerical study of dambreak generated swash on impermeable slopes. Coastal Engineering, 57, 513-530.http://dx.doi.org/10.1016/j.coastaleng.2009.12.007

Steenhauer, K., D. Pokrajac, T. O'Donoghue, and G.A. Kikkert. 2011. Subsurface processes generated by bore-driven swash on coarse-grained beaches, Journal of Geophysical Research, 116, 17pp.

Steenhauer, K., D. Pokrajac and T. O'Donoghue. 2012. Numerical model of swash motion and air entrapment within coarse-grained beaches, Coastal Engineering, 64, 113-126.http://dx.doi.org/10.1016/j.coastaleng.2012.01.004

Turner I.L. and G. Masselink. 1998. Swash infiltration-exfiltration and sediment transport. Journal of Geophysical Research, 103, 813-824.

Vafai, K. and S. J. Kim. 1995, On the limitations of the brinkman-forchheimer-extended darcy equation, Int. J. Heat and Fluid Flow, 16, 11-15.http://dx.doi.org/10.1016/0142-727X(94)00002-T


Full Text: PDF

Creative Commons License
This work is licensed under a Creative Commons Attribution 3.0 License.