NUMERICAL VALIDATION OF WAVE PROPAGATION, TRANSFORMATION AND DISSIPATION TOWARDS A HARBOUR FACILITY: A NEW BECHMARK CASE

Gabriel Diaz-Hernandez, Pedro Lomonaco, Jose Antonio Armesto, Andrés Patricio Mendoza

Abstract


A new set of experimental data is used in the numerical validation (2DH) of waves propagating towards a scaled harbour facility. The Laredo marina-harbour located at the North coast of Cantabria (Spain), which has lately improved by the extension of its main breakwater, was modelled in the 28 m long and 8.6 m wide directional wave basin of the Environmental Hydraulic Institute, at the University of Cantabria. For two months, different 3D tests were simulated for this harbour configuration, starting with the detailed construction of the real bathymetry contour data, and followed by the construction of the 450 m (trunk and head), of a curved rubble-mound, 1:2 slope breakwater, capped with a variable height L-shaped crownwall and the armour layer is composed of 60 ton (trunk) and 70 ton (roundhead) cubic units.

Keywords


pCOULWAVE; Numerical model; Physical model; Breaking wave; Rubble-mound breakwater

References


Armesto J.A., Diaz-Hernandez G., Losada I. J., (2012): Applicability and validation of pCOULWAVE to study engineering Problems. Coastal Engineering, (under review).

Bouws, E., H. Gunther, W. Rosenthal and C. L. Vincent (1985a) Similarity of the wind wave spectrum in finite depth water, Part I- Spectrum form. J. Geophys. Res., 90(C1), 975-986.http://dx.doi.org/10.1029/JC090iC01p00975

Chen, Q. R., Dalrymple, A., Kirby, T., Kennedy, A. & Haller, M. C. 1999 Boussinesq modelling of a rip current system. J. Geophys. Res. 104, 20617-20637.http://dx.doi.org/10.1029/1999JC900154

Cox, D.T., Kobayashi, N., Okayasu, A., 1995. Experimental and numerical modeling of surf zone hydrodynamics. Technical Report. CACR-95-07. Center for Applied Coastal Research, University of Delaware.

Desombre J., Morichon D., Mory M., RANS v2–f simulation of a swash event: Detailed flow structure, Coastal Engineering, Volume 71, January 2013, Pages 1-12, ISSN 0378-3839.

Erduran, K.S., Ilic, S., Kutija, V., 2005. Hybrid finite-volume finite-difference scheme for the solution of Boussinesq equations. International Journal for Numerical Methods in Fluid 49, 1213–1232.http://dx.doi.org/10.1002/fld.1021

Garcia, N., Lara, J. L., & Losada, I. J. (2004). 2-D numerical analysis of near-field flow at low-crested permeable breakwaters. Coastal Engineering, 51(10), 991-1020. Retrieved from Higuera P., LaraJ.L., Losada I.J., Simulating coastal engineering processes with OpenFOAM®, Coastal Engineering, Available online 19 July 2012, ISSN 0378-3839.

Hubbard, M.E., Dodd, N., 2002. A 2d numerical model of wave run-up and overtopping. Coastal Engineering 47, 1 – 26.http://dx.doi.org/10.1016/S0378-3839(02)00094-7

Kennedy, A. B. & Fenton, J. D. 1997 A fully-nonlinear computational method for wave propagation over topography. Coast. Engng 32, 137-161.http://dx.doi.org/10.1016/S0378-3839(97)81747-4

Kim, D.H., Lynett, P.J., Socolofsky, S.A. (2009): A depth-integrated model for weakly dispersive, turbulent and rotational fluid flows. Ocean Modelling. 27, 198-214.http://dx.doi.org/10.1016/j.ocemod.2009.01.005

Liang, Q., Borthwick, A.G., 2009. Adaptive quadtree simulation of shallow flows with wetdry fronts over complex topography. Computers & Fluids 38, 221 – 234.http://dx.doi.org/10.1016/j.compfluid.2008.02.008

Losada, I. J., Lara, J. L., Guanche, R., & Gonzalez-Ondina, J. M. (2008). Numerical analysis of wave overtopping of rubble mound breakwaters. Coastal Engineering, 55(1), 47-62.http://dx.doi.org/10.1016/j.coastaleng.2007.06.003

Lynett, P., 2002. A two-dimensional, depth-integrated mo del for internal wave propagation over variable bathymetry. Wave Motion 36, 221–240.http://dx.doi.org/10.1016/S0165-2125(01)00115-9

Lynett, P.J., 2006. Nearshore wave modelling with high-order boussinesq-type equations. Journal of Waterway, Port, Coastal and Ocean Engineering, 348–357.http://dx.doi.org/10.1061/(ASCE)0733-950X(2006)132:5(348)

Lynett, P.J., Liu, P.L.F., 2004. A two-layer approach to wave modelling. Proc. Royal Soc., London, Series A 460, 2637–2669.

Lynett, P.J., Melby, J.A., Kim, D.H., 2010. An application of boussinesq modeling to hurricane wave overtopping and inundation. Ocean Engineering 37, 135 – 153.http://dx.doi.org/10.1016/j.oceaneng.2009.08.021

Lynett, P.J., Wu, T.R., Liu, P.L.F., 2002. Moleling wave runup with depth-integrated equations. Coastal Engineering 46, 89 – 107.http://dx.doi.org/10.1016/S0378-3839(02)00043-1

Peregrine, D.H., 1967. Long waves on a beach. Journal of Fluid Mechanics 27, 815–827.http://dx.doi.org/10.1017/S0022112067002605

Madsen, P. A., Sörensen, O. R. &. Schäffer, H. A. 1997 Surf zone dynamics simulated by a Boussinesq type model. Part 1. Model description and cross-shore motion of regular waves. Coast. Engng 32, 255-287.

Madsen, P.A., Sørensen, O., Schäffer, H.A., 1997. Surf zone dynamics simulated by a Boussinesq type model. Part II: surf beat and swash oscillations for wave groups and irregular waves. Coastal Engineering 32, 289–319.http://dx.doi.org/10.1016/S0378-3839(97)00029-X

Madsen, P.A., Bingham, H.B., Sch er, H.A., 2003. Boussinesq-type formulations for fully nonlinear and extremely dispersive water waves: derivation and analysis. Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences 459, 1075–1104.

Nwogu, O., 1993. Alternative form of boussinesq equations for nearshore wave propagation. Journal of Waterway, Port, Coastal, and Ocean Engineering 119, 618–638.http://dx.doi.org/10.1061/(ASCE)0733-950X(1993)119:6(618)

Shiach, J.B., Mingham, C.G., 2009. A temporally second-order accurate Godunov-type scheme for solving the extended Boussinesq equations. Coastal Engineering 56, 32–45.http://dx.doi.org/10.1016/j.coastaleng.2008.06.006

Ting, F.C.K., Kirby, J.T., 1995. Dynamics of surf-zone turbulence in a strong plunging breaker. Coastal Engineering 24, 177–204.http://dx.doi.org/10.1016/0378-3839(94)00036-W

Ting, F.C.K., Kirby, J.T., 1996. Dynamics of surf-zone turbulence in a strong spilling breaker. Coastal Engineering 27, 131–160.http://dx.doi.org/10.1016/0378-3839(95)00037-2

Tonelli, M. and Petti, M. (2009). Hybrid finite volume - finite difference scheme for 2DH improved Boussinesq equations. Coastal Engineering, 56:609 - 620.http://dx.doi.org/10.1016/j.coastaleng.2009.01.001

Vidal C., Medina R. Lomónaco P. 2006. Wave height parameter or damage description of rubblemound breakwaters. Coastal Engineering 53 (2006). 711 – 722.http://dx.doi.org/10.1016/j.coastaleng.2006.02.007


Full Text: PDF

Creative Commons License
This work is licensed under a Creative Commons Attribution 3.0 License.