NUMERICAL SIMULATIONS OF BREAKING SOLITARY WAVES

Pierre Lubin, Stéphane Glockner

Abstract


This paper presents the application of a parallel numerical code to breaking solitary waves impacting a seawall structure. The three-dimensional Navier-Stokes equations are solved in air and water, coupled with a subgrid-scale model to take turbulence into account. We compared three numerical methods for the free-surface description, using the classical VOF-PLIC and VOF-TVD methods, and an original VOF-SM method recently developed in our numerical tool (Vincent et al., 2010). Some experimental data for solitary waves impinging and overtopping coastal structures are available in literature (Hsiao et al., 2010). Solitary waves are often used to model tsunami behaviors because of their hydrodynamic similarities. From a numerical point of view, it allows shorter CPU time simulations, as only one wave breaks. Here we apply the model to simulate three-dimensional solitary waves and compare qualitatively our results with the experimental data. We investigate three configurations of solitary waves impinging and overtopping an impermeable seawall on a 1:20 sloping beach.

Keywords


Navier-Stokes; numerical simulation; solitary wave; two-phase flow; breaking waves; air entrainment

References


Abadie, S., Caltagirone, J.-P. and Watremez, P. 1998. Mécanisme de génération du jet secondaire ascendant dans un déferlement plongeant, C. R. Mécanique, 326, 553-559.

Ahusborde, E. and S. Glockner. 2011. A 2d block-structured mesh partitioner for accurate flow simulations on non-rectangular geometries, Computers and Fluids, 43, 2–13.http://dx.doi.org/10.1016/j.compfluid.2010.07.009

Deshpande, S. S., M. F. Trujillo, X. Wu, and G. Chahine. 2012. Computational and experimental characterization of a liquid plunging into a quiescent pool at shallow inclination, International Journal of Heat and Fluid Flow, 34, 1–14.http://dx.doi.org/10.1016/j.ijheatfluidflow.2012.01.011

Falgout, R. D., J. E. Jones, and U. M. Yang. 2006. The design and implementation of HYPRE, a library of parallel high performance preconditioners, chapter 51, 267-294. Numerical Solution of Partial Differential Equations on Parallel Computers. Springer-Verlag.

Helluy, P., F. Gollay, S. T. Grilli, N. Seguin, P. Lubin, J.-P. Caltagirone, S. Vincent, D. Drevard and R. Marcer. 2005. Numerical simulations of wave breaking. Mathematical Modelling and Numerical Analysis Mathematical Modelling and Numerical Analysis, 39 (3), 591-608.http://dx.doi.org/10.1051/m2an:2005024

Hsiao, S.-C. and T.-C. Lin. 2010. Tsunami-like solitary waves impinging and overtopping an impermeable seawall: Experiment and RANS modeling, Coastal Engineering, 57, 1-18.http://dx.doi.org/10.1016/j.coastaleng.2009.08.004

Kataoka, I. 1986. Local instant formulation of two-phase flow, International Journal of Multiphase Flow, 12 (5), 745-758.http://dx.doi.org/10.1016/0301-9322(86)90049-2

Labourasse, E., D. Lacanette, A. Toutant, P. Lubin, S. Vincent, O. Lebaigue, J.-P. Caltagirone, and P. Sagaut. 2007. Towards Large Eddy Simulation of isothermal two-phase flows: governing equations and a priori tests. International Journal of Multiphase Flow, 33(1), 1–39.http://dx.doi.org/10.1016/j.ijmultiphaseflow.2006.05.010

LeVeque, R. J. 1992. Numerical methods for conservation laws, Lectures in Mathematics, Birkhauser, Zurich.http://dx.doi.org/10.1007/978-3-0348-8629-1

PMCid:48921

Lin, P., and P. L.-F. Liu. 1999. Internal wave-maker for Navier-Stokes equations models, Journal of Waterway, Port, Coastal and Ocean Engineering, 125, 322-330.http://dx.doi.org/10.1061/(ASCE)0733-950X(1999)125:4(207)

Lubin, P., S. Vincent, S. Abadie and J.-P. Caltagirone. 2006. Three-dimensional Large Eddy Simulation of air entrainment under plunging breaking waves, Coastal Engineering, 53, 631-655.http://dx.doi.org/10.1016/j.coastaleng.2006.01.001

Lubin, P., H. Chanson, and S. Glockner. 2010. Large Eddy Simulation of turbulence generated by a weak breaking tidal bore, Environmental Fluid Mechanics, 10, 587-602.http://dx.doi.org/10.1007/s10652-009-9165-0

Lubin, P., S. Glockner, O. Kimmoun, and H. Branger. 2011. Numerical study of the hydrodynamics of regular waves breaking over a sloping beach, European Journal of Mechanics B/Fluids, 30 (6), 552–564.http://dx.doi.org/10.1016/j.euromechflu.2011.01.001

Sagaut, P. 1998. Large eddy simulation for Incompressible Flows, Springer, Verlag.

Ting, F. 2008. Large-scale turbulence under a solitary wave: Part 2. Forms and evolution of coherent structures, Coastal Engineering, 55, 522–536.http://dx.doi.org/10.1016/j.coastaleng.2008.02.018

Vincent, S., J. Larocque, D. Lacanette, A. Toutant, P. Lubin, and P. Sagaut. 2008. Numerical simulation of phase separation and a priori two-phase LES filtering. Computers and Fluids, 37, 898–906.http://dx.doi.org/10.1016/j.compfluid.2007.02.017

Vincent, S., G. Balmigère, J.-P. Caltagirone, and E. Meillot. 2010. Eulerian-Lagrangian multiscale methods for solving scalar equations – application to incompressible two-phase flows, Journal of Computational Physics, 229 (1), 73–106.http://dx.doi.org/10.1016/j.jcp.2009.09.007

Youngs, D. L., K. W. Morton, and M. J. Baines. 1982. Time-dependent multimaterial flow with large fluid distortion, Numerical Methods for Fluid Dynamics. Academic Press, New York.

PMCid:1419689


Full Text: PDF

Creative Commons License
This work is licensed under a Creative Commons Attribution 3.0 License.