Dirk Pieter Rijnsdorp, Pieter Bart Smit, Marcel Zijlema


This paper presents numerical modelling of the nearshore transformation of infragravity waves induced by bichromatic wave groups over a horizontal and a sloping bottom. The non-hydrostatic model SWASH is assessed by comparing model predictions with analytical solutions over a horizontal bottom and with detailed laboratory observations for a sloping bottom. Good agreement between model predictions and data is found throughout the domain for bound infragravity waves. Furthermore the model predicts greater outgoing free infragravity wave-heights for steeper slope regimes which is consistent with the measurements. The model however tends to overestimate the magnitude of the outgoing infragravity waves.


infragravity waves; non-hydrostatic modelling; nearshore wave transformation; SWASH


Battjes, J.A., H.J. Bakkenes, T.T. Janssen and A.R. Van Dongeren. 2004. Shoaling of subharmonic gravity waves, Journal of Geophysical Research, 109 (C2).

Bowers, E.C. 1977. Harbour resonance due to set-down beneath wave groups, Journal of Fluid Mechanics, 79, 71-92

Bromirski, P.D., O.V. Sergienko and D.R. MacAyeal. 2010. Transoceanic infragravity waves impacting Antarctic ice shelves, Geophysical Research Letters, 37 (L02502).

Lin, P. and P.L.-F. Liu. 1998. A numerical study of breaking waves in the surf zone, Journal of Fluid Mechanics, 359, 239-264

Longuet-Higgins, M.S. and R.W. Stewart. 1960. Changes in the form of short gravity waves on long waves and tidal currents, Journal of Fluid Mechanics, 8, 565-583.

Longuet-Higgins, M.S. and R.W. Stewart. 1962. Radiation stress and mass transport in gravity waves with application to surf beats, Journal of Fluid Mechanics, 13, 481-504.

Ma G., F. Shi and J.T. Kirby. 2012. Shock-capturing non-hydrostatic model for fully dispersive surface wave processes. Ocean Modelling, 43-44. 22-35

Madsen, P.A., R. Murray and O.R.Sørenson. 1991. A new form of the Boussinesq equations with improved linear dispersion characteristics. Coastal Engineering, 15, 371-388

Naciri, M., B. Buchner, B. Bunnik, T. Huijsmans and R. Andrews. 2004. Low frequency motions of LNG carriers in shallow water. Proceedings Offshore Mechanics & Arctic Engineering Conference.

PMid:15155674 PMCid:415699

Roelvink, J.A., A.J.H.M . Reniers, A.R. van Dongeren, J.S.M. van Thiel de Vries, R.T. McCall and J. Lescinski. 2009. Modelling storm impacts on beaches, dunes and barrier islands. Coastal Engineering, 56, 1133-1152

Smit P.B., M. Zijlema and G. Stelling. 2012. Depth-induced wave breaking in a non-hydrostatic, nearshore wave model. submitted to Coastal Engineering (under revision).

Stelling G. and M. Zijlema. 2003. An accurate and efficient finite-difference algorithm for nonhydrostatic free-surface flow with application to wave propagation, International Journal for Numerical Methods In Fluids, 43, 1-23.

Symonds, G., D.A. Huntly and A.J. Bowen. 1982. Two-dimensional surf beat: long wave generation by a time-varying breakpoint, Journal of Geophysical Research, 87, 492-498.

Van Noorloos, J.C. 2003. Energy transfer between short wave groups and bound long waves on a plane slope, M. S. thesis Delft University of Technology, 68 pp.

Van Dongeren, A., J. Battjes, T. Janssen., J. Van Noorloos, K. Steenhauer, G. Steenbergen and A. Reniers. 2007. Shoaling and shoreline dissipation of low-frequency waves, Journal of Geophysical Research, 112 (C2).

Zijlema, M., G.S. Stelling, P.B. Smit. 2011. SWASH: an operational public domain code for simulating wave fields and rapidly varied flows in coastal waters, Coastal Engineering, 58, 992-1012.

Full Text: PDF

Creative Commons License
This work is licensed under a Creative Commons Attribution 3.0 License.