ESTIMATING FLUVIAL DISCHARGE IN THE CARIBBEAN SEABOARD OF COLOMBIA: MAGNITUDE, VARIABILITY AND EXTREME EVENTS

Juan Camilo Restrepo, Juan Carlos Ortíz, Mauro Maza, Luís Otero, Manuel Alvarado, Julían Aguirre

Abstract


Monthly freshwater discharge data of ten rivers draining into the Caribbean Sea in the northern of Colombia (Caribbean alluvial plain) are analyzed. The data are used to quantify the magnitude, to estimate long-term trends, and to evaluate variability patterns of freshwater discharges into the ocean. These Colombian rivers contribute with ~340.9 km3 yr-1 of freshwater into the Caribbean Sea. The Magdalena River delivers the largest discharge, with a mean discharge at Calamar of 205.5 km3 yr-1 which represents 26% of the total fluvial discharge into this basin. From 2000 to 2010 the annual streamflow of these rivers rose up three fold. However, only the Mulatos, Canal del Dique, Magdalena, and Fundación Rivers have significant statistical upward trends. The concurrence of the major oscillation processes and the maximum power of the 3-7 year fluctuation defined a period of intense hydrological activity around 1998-2002. Wavelet spectrum analysis indicated a change in the variability patterns of fluvial systems between 2000 and 2010, characterized by a shift toward a domain of quasi-decadal processes (8-12 years). The Intertropical Convergence Zone (ITCZ), ENSO events, and quasi-decadal climate processes (e.g. sea surface temperatures over tropical North Atlantic, Pacific Decadal Oscillation) are the main factors controlling fluvial discharge variability of these fluvial systems.

Keywords


Mann-Kendal analysis; Wavelet analysis; Magdalena River; hydrologic oscillation; Caribbean Sea.

References


Amarasekera, K., R. Lee, E. Williams, and E. Elthair, 1997. ENSO and the natural variability in the flow of tropical rivers. Journal of Hydrology, 200, 24-39.http://dx.doi.org/10.1016/S0022-1694(96)03340-9

Garcia N., and C. Mechoso. 2005. Variability in the discharge of South American rivers and in climate. Journal of Hydrological Sciences, 50(3), 459-478.http://dx.doi.org/10.1623/hysj.50.3.459.65030

GRDC (Global Runoff Data Centre), 2009. Surface freshwater fluxes into the world oceans from land areas associated with GIWA regions between 170E and 10E. Online Reports. (

Gutierrez, F., and J. Dracup. 2001. An analysis of the feasibility of long-range streamflow forecasting for Colombia using El Nino – Southern Oscillation indicators. Journal of Hydrology, 246, 181-196.http://dx.doi.org/10.1016/S0022-1694(01)00373-0

Hungtinton T. 2006. Evidence for intensification of the global water cycle: review and synthesis. Journal of Hydrology, 319, 83-95.http://dx.doi.org/10.1016/j.jhydrol.2005.07.003

Labat, D. 2005. Recent advances in wavelet analyses: Part 1 – A review of concepts. Journal of Hydrology, 314, 275-288.http://dx.doi.org/10.1016/j.jhydrol.2005.04.003

Labat, D. 2008. Wavelet analysis of the annual discharge records of the world's largest rivers. Advances in Water Resources, 31, 109-117.http://dx.doi.org/10.1016/j.advwatres.2007.07.004

Labat, D. 2010. Cross wavelet analyses of annual continental freshwater discharge and selected climate indices. Journal of Hydrology, 385, 269-278.http://dx.doi.org/10.1016/j.jhydrol.2010.02.029

Labat, D., J. Ronchail, and J.L. Guyot. 2005. Recent advances in wavelet analyses: Part 2 – Amazon, Parana, Orinoco and Congo discharges time scale variability. Journal of Hydrology, 314, 289-311.http://dx.doi.org/10.1016/j.jhydrol.2005.04.004

Labat, D., J. Ronchail, J. Callede, J.L. Guyot, E. de Oliveira, and W. Guimares. 2004. Wavelet analysis of Amazon hydrological regime variability. Geophysical Research Letter, 31, L02501.http://dx.doi.org/10.1029/2003GL018741

Mesa O., G. Poveda, and L. Carvajal. 1997. Introducción al clima de Colombia, Universidad Nacional de Colombia, Bogotá, Colombia, 390 pp.

Milliman, J.D., K. Farnsworth, P. Jones, K. Xu, and L.C. Smith. 2008. Climatic and anthropogenic factors affecting river discharge to the global ocean, 1951-2000. Global and Planetary Change, 62, 187 – 194.http://dx.doi.org/10.1016/j.gloplacha.2008.03.001

NOAA (National Oceanic and Atmospheric Administration), 2012. National Weather Service – Climate Prediction Center. United States. Base de datos en línea (

Pasquini, A., and P. Depetris. 2007. Discharge trends and flow dynamics of South American rivers draining the southern Atlantic seaboard: An overview. Journal of Hydrology, 333, 385-399.http://dx.doi.org/10.1016/j.jhydrol.2006.09.005

Pekarova, P., P. Miklanek, and J. Pekar. 2003. Spatial and temporal runoff oscillation analysis of the main rivers of the world during the 19th-20th centuries. Journal of Hydrology, 274. 62-79.http://dx.doi.org/10.1016/S0022-1694(02)00397-9

Poveda G. 2004. La hidroclimatología de Colombia: una síntesis desde la escala inter-decadal hasta la escala diurna. Revista de la Academia Colombiana de Ciencias Exactas, Físicas y Naturales, 28(107), 201-222.

Poveda G., A. Jaramillo, M. Gil, N. Quiceno, and R. Mantilla. 2001. Seasonality in ENSO-related precipitation, river discharges, soil moisture, and vegetation index in Colombia. Water Resources Research, 37(8), 2169-2178.http://dx.doi.org/10.1029/2000WR900395

Probst, J.L., and Y., Tardy. 1987. Long range streamflow and world continental runoff fluctuations since the beginning of this century. Journal of Hydrology, 94, 289-311.http://dx.doi.org/10.1016/0022-1694(87)90057-6

Restrepo J.C., and J.D. Restrepo. 2005. Efectos Naturales y Antrópicos en la Producción de Sedimentos de la Cuenca del Río Magdalena. Revista de la Academia Colombiana de Ciencias Exactas, Físicas y Naturales, 29 (111), 239-254.

Restrepo J.D., and B. Kjerfve. 2000. Magdalena river: interannual variability (1975-1995) and revised water discharge and sediment load estimates. Journal of Hydrology, 235, 137-149.http://dx.doi.org/10.1016/S0022-1694(00)00269-9

Restrepo J.D., and B. Kjerfve. 2004. The Pacific and Caribbean Rivers of Colombia: Water Discharge, Sediment Transport and Dissolved Loads. pp 169-187. En: Lacerda L., Santelli R., Duursma, E., Abrao, J. 2004. Environmental Geochemistry in Tropical and Subtropical Environments. Springer Verlag, Berlín, Germany. 455 p.

Rossi A., B. Massei, D. Laignel, D. Sebag, and Y. Copard. 2009. The response of the Mississippi River to climate fluctuations and reservoir construction as indicated by wavelet analysis of streamflow and suspended sediment load. Journal of Hydrology, 377, 237-244.http://dx.doi.org/10.1016/j.jhydrol.2009.08.032

Serrano, B. 2004. The Sinú river delta on the northwestern Caribbean coast of Colombia: bay infilling associated with delta development. Journal of South American Earth Sciences, 16, 639-647.

Shumway R., and D. Stoffer. 2004. Time Series Analysis and Its Applications, Springer-Verlag, Amsterdam, The Netherlands, 543 pp.

Torrence C., and G. Compo. 1998. A Practical Guide to Wavelet Analysis. Bulletin of the American Meteorological Society, 79(1), 61-78.2.0.CO;2">http://dx.doi.org/10.1175/1520-0477(1998)079<0061:APGTWA>2.0.CO;2

Walling D., and Fang. 2003. Recent trends in the suspended sediment loads of the world's rivers. Global and Planetary Change, 39, 111-126.http://dx.doi.org/10.1016/S0921-8181(03)00020-1

Zhang S., X. Lu, D. Higgit, A. Chen, J. Han, and H. Sun. 2008. Recent changes of water discharge and sediment load in the Zhujiang (Pearl River) Basin, China. Global and Planetary Change, 60, 365-380.http://dx.doi.org/10.1016/j.gloplacha.2007.04.003

Yue S., P. Pilon, and G. Cavadias. 2002. Power of the Mann-Kendall and Spearman's rho test to detecting monotonic trends in hydrological series. Journal of Hydrology, 259, 254-271.http://dx.doi.org/10.1016/S0022-1694(01)00594-7


Full Text: PDF

Creative Commons License
This work is licensed under a Creative Commons Attribution 3.0 License.