ASSESSMENT OF THE REGIONAL FREQUENCY ANALYSIS TO THE ESTIMATION OF EXTREME STORM SURGES

Jérôme Weiss, Pietro Bernardara, Michel Benoit

Abstract


Regional frequency analysis (RFA) is performed to estimate extreme storm surges along the French coasts of the Atlantic Ocean, the English Channel and the Southern part of the North Sea. An insight on the formation of physically homogeneous regions from a criterion of propagation of storms is provided. The treatment of the pairwise dependence structure within a given region through a spatial extreme value copula is also considered, leading to a model coupling physically-based RFA and spatial dependence to describe the probabilistic behavior of extreme storm surges.

Keywords


regional frequency analysis; extreme storm surges; storm propagation; spatial dependence; extreme value copula

References


Bardet, L., C.-M. Duluc, V. Rebour and J. L'Her. 2011. Regional frequency analysis of extreme storm surges along the French coast, Natural Hazards and Earth System Sciences, 11, 6, 1627-1639.http://dx.doi.org/10.5194/nhess-11-1627-2011

Bardossy, A. 2006. Copula-Based Geostatistical Models for Groundwater Quality Parameters, Water Resources Research, 42, 11, W11416.

Bayazit, M. and B. Önöz. 2004. Sampling variances of regional flood quantiles affected by intersite correlation, Journal of Hydrology, 291 (1-2), 42-51http://dx.doi.org/10.1016/j.jhydrol.2003.12.009

Beirlant, J., U. Goegebeur, J. Segers and J. L. Teugels. 2004. Statistics of Extremes : Theory and Applications, Wiley.http://dx.doi.org/10.1002/0470012382

Bernardara, P., M. Andreewsky and M. Benoit. 2011. Application of the Regional Frequency Analysis to the estimation of extreme storm surges, J. Geophys. Res., 116, C02008, 1-11.

Buishand, T. A. 1984. Bivariate extreme-value data and the station-year method, Journal of Hydrology, 69, 77-95.http://dx.doi.org/10.1016/0022-1694(84)90157-4

Castellarin, A., D. H. Burn and A. Brath. 2008. Homogeneity testing: how homogeneous do heterogeneous cross-correlated regions seem?, Journal of Hydrology, 360, 67-76.http://dx.doi.org/10.1016/j.jhydrol.2008.07.014

Coles, S. 2001. An introduction to statistical modeling of extreme values, London, Springer-Verlag.

Dales, M. Y. and D. W. Reed. 1989. Regional flood and storm hazard assessment, 102, Institute of Hydrology, Wallingford, Oxon.

Darlymple, T. 1960. Flood Frequency Analysis, 1543-A, US Geological Survey, Water Supply Paper, Davison, A. C. and M. M. Gholamrezaee. 2012. Geostatistics of extremes, Proceedings of the Royal Society, series A, 468, 581-608.

Genest, C., I. Kojadinovic, J. Nešlehová and J. Yan. 2011. A goodness-of-fit test for bivariate extremevalue copulas, Bernoulli, 17, 253-275.http://dx.doi.org/10.3150/10-BEJ279

Goda, Y., M. Kudaka and H. Kawai. 2010. Incorporating of Weibull distribution in L-moments method for Regional Frequency Analysis of Peak Over Threshold wave heights, Proc. 32th Int. Conf. on Coastal Eng. (ICCE 2010), Shangai.

Héquette, A. and C. Rufin-Soler. 2007. Rapport scientifique final : Plages a risque (PAR) / Beaches at risk (BAR), Progamme INTERREG IIIa Phase II, Université du Littoral Côte d'Opale de Dunkerque, Dunkerque.

Hosking, J. R. M. and J. R. Wallis. 1997. Regional Frequency Analysis. An approach based on Lmoments, Cambridge, Cambridge University Press.http://dx.doi.org/10.1017/CBO9780511529443

Katz, W., M. B. Paralange and P. Naveau. 2002. Statistics of extreme in hydrology, Advances in Water Resources, 25, 1287-1304.http://dx.doi.org/10.1016/S0309-1708(02)00056-8

Kjeldsen, T. R. and D. Rosbjerg. 2002. Comparison of regional index flood estimation procedures based on the extreme value type I distribution, Stochastic environmental research and risk assessment, 16, 5, 358-373.http://dx.doi.org/10.1007/s00477-002-0104-6

Ledford, A. W. and J. A. Tawn. 1996. Statistics for near independence in multivariate extreme values, Biometrika 83, 169–187.http://dx.doi.org/10.1093/biomet/83.1.169

Renard, B. 2011. A Bayesian Hierarchical Approach To Regional Frequency Analysis, Water Resources Research, 47, W11513.http://dx.doi.org/10.1029/2010WR010089

Renard, B. and G. Lang. 2007. Use of a Gaussian copula for multivariate extreme value analysis :some case studies in hydrology, Advances in Water Resources, 30, 897–912.http://dx.doi.org/10.1016/j.advwatres.2006.08.001

Salvadori, G. and C. De Michele. 2011. Estimating strategies for multiparameter multivariate extreme value copulas, Hydrol. Earth Syst. Sci., 15, 141-150.http://dx.doi.org/10.5194/hess-15-141-2011

Salvadori, G., C. De Michele, N. T. Kottegoda and R. Rosso. 2007. Extremes in Nature, An approach using copulas, Dordrecth, Springer.

Simon, B. 2007. La marée océanique côtière, Editions de l'Institut Océanographique.

Sklar, A. 1959. Fonctions de répartition à n dimensions et leurs marges, Publ. Inst. Statist. Univ. Paris, 8, 229–231.

Stedinger, J. R. and L.-H. Lu. 1995. Appraisal of regional and index flood quantile estimators, Stochastic Hydrology and Hydraulics 9, 1, 49–75.http://dx.doi.org/10.1007/BF01581758

Sveinsson, O. G. B., D. C. Boes and J. D. Salas. 2001. Population index flood method for regional frequency analysis, Water Resources Research, 37, 11, 2733– 2748.http://dx.doi.org/10.1029/2001WR000321

Van Gelder, P. H. A. J. M., J. De Ronde, N. M. Neykov and P. Neytchev. 2000. Regional Frequency Analysis of Extreme Wave Heights: Trading Space for Time, Proc. 27th Int. Conf. on Coastal Eng. (ICCE 2000), Sydney.

Weiss, J., P. Bernardara, M. Andreewsky and M. Benoit. 2012. Seasonal autoregressive modeling of a skew storm surge series, Ocean Modelling, 47, 41-54.http://dx.doi.org/10.1016/j.ocemod.2012.01.005


Full Text: PDF

Creative Commons License
This work is licensed under a Creative Commons Attribution 3.0 License.