NUMERICAL AND EXPERIMENTAL STUDY OF DAM-BREAK FLOOD PROPAGATION AND ITS IMPLICATION TO SEDIMENT EROSION

Hung-Chu Hsu, A. Torres-Freyermuth, Tian-Jian Hsu, Hwung-Hweng Hwung

Abstract


Regarding the hydrodynamics, within the past two decades it has become popular in numerical modeling of free-surface flow to adopt a Reynolds-averaged Navier-Stokes approach, where the volume of fluid (VOF) method is utilized to track the evolution of free-surface. However, this robust numerical model has not been widely applied to the study of sediment transport processes. In this study, we shall extend the numerical model to simulate suspended sediment transport and study the erosion pattern during the initial stage of the dam break flow. We also conducted a series of experiments in a horizontal channel of rectangular section and recorded the snap shots of surface profiles of a dam- break wave during the initial stage of dam-break. Measured data is utilized here to study the hydrodynamics and to validate the numerical model.

Keywords


numerical modeling; dam-break flow; laboratory tests; sediment transport

References


Abderrezzak, K.E.K., A. Paquier, and B. Gay. 2008. One-dimensional numerical modelling of dambreak waves over movable beds: application to experimental and field cases, Environmental Fluid Mechanics, 8(2), 169-198.http://dx.doi.org/10.1007/s10652-008-9056-9

Capart, H., and D.L. Young. 1998. Formation of a jump by the dam-break wave over a granular bed, Journal of Fluid Mechanics, 372, 165-187.http://dx.doi.org/10.1017/S0022112098002250

Chan, E.S., and W.K. Melville. 1988. Deep-water plunging wave pressures on a vertical plane wall, Proceedings of the Royal Society of London Series a-Mathematical Physical and Engineering Sciences; 417(1852), 95-131.

Cheng, M.Y., and L. Peng. 2006. Simple and efficient improvements of multivariate local linear regression, Journal of Multivariate Analysis, 97(7), 1501-1524.http://dx.doi.org/10.1016/j.jmva.2005.05.006

Chorin, A.J. 1969. On Convergence of discrete approximations to Navier-Stokes equations, Mathematics of Computation, 23(106), 341-353.http://dx.doi.org/10.1090/S0025-5718-1969-0242393-5

Engelund, F., and J. Fredsøe. 1976. Sediment transport model for straight alluvial channels, Nordic Hydrology, 7(5), 293-306.

Fraccarollo, L., and H. Capart. 2002. Riemann wave description of erosional dam-break flows, Journal of Fluid Mechanics, 461, 183-228.http://dx.doi.org/10.1017/S0022112002008455

Fredsøe, J., and R. Deigaard. 1992. Mechanics of Coastal Sediment Transport, Advanced Series on Ocean Engineering, Vol. 3, World Scientific.

Hagatun, K., and K.J. Eidsvik. 1986. Oscillating turbulent boundary-layer with suspended sediments, Journal of Geophysical Research-Oceans, 91(C11), 3045-3055.http://dx.doi.org/10.1029/JC091iC11p13045

Hirt, C.W., and B.D. Nichols. 1981. Volume of fluid (Vof) method for the dynamics of free boundaries, Journal of Computational Physics, 39(1), 201-225.http://dx.doi.org/10.1016/0021-9991(81)90145-5

Huang, J.J., W.Y. Hsu, R.Y. Yang, and H.H. Hwung. 2010. The experiment of flood bore propagation of dam-break, Proceeding of the 32nd Ocean Engineering Conference in Taiwan National Taiwan Ocean University, 587-592.

PMCid:3012676

Janosi, I.M., D. Jan, K.G. Szabo, and T. Tamas. 2004. Turbulent drag reduction in dam-break flows, Experiments in Fluids, 37(2), 219-229.http://dx.doi.org/10.1007/s00348-004-0804-4

Kao, S.J., and J.D. Milliman. 2008. Water and sediment discharge from small mountainous rivers, Taiwan: The roles of lithology, episodic events, and human activities, Journal of Geology, 116(5), 431-448.http://dx.doi.org/10.1086/590921

Kobayashi, N., and A.W. Raichle. 1994. Irregular wave overtopping of revetments in surf zones, Journal of Waterway Port Coastal and Ocean Engineering-Asce, 120(1), 56-73.http://dx.doi.org/10.1061/(ASCE)0733-950X(1994)120:1(56)

Kothe, D.B., R.C. Mjolsness and M.D. Torrey. 1991. RIPPLE: A Computer Program for Incompressible Flows with Free Surfaces, Los Alamos National Lab., LA-12007-MS, Los Alamos, New Mexico.

Lin, P.Z., and P.L.F. Liu. 1998a. A numerical study of breaking waves in the surf zone, Journal of Fluid Mechanics, 359, 239-264.http://dx.doi.org/10.1017/S002211209700846X

Lin, P.Z., and P.L.F. Liu. 1998b. Turbulence transport, vorticity dynamics, and solute mixing under plunging breaking waves in surf zone, Journal of Geophysical Research-Oceans, 103(C8), 15677-15694.http://dx.doi.org/10.1029/98JC01360

Ritter, A. 1892. Die Fortpflanzung de Wasserwellen, Zeitschrift Verein Deutscher Ingenieure, 36(33), 47-954.

Rodi, W. 1980. Turbulence models and their application in hydraulics, International Association of Hydraulic Engineering (IAHR) Monograph, Delft, The Netherlands.

PMid:7369967

Rodi, W. 1987. Examples of calculation methods for flow and mixing in stratifled fluids, J. Geophys. Res., 92, 5305-5328.http://dx.doi.org/10.1029/JC092iC05p05305

Shih, T.H., J. Zhu, and J. Lumley. 1996. Calculation of wall-bounded complex flows and free shear flows, International Journal for Numerical Methods in Fluids, 23(11), 1133-1144.http://dx.doi.org/10.1002/(SICI)1097-0363(19961215)23:11<1133::AID-FLD456>3.0.CO;2-A

Stansby, P.K., A. Chegini, and T. Barnes. 1998. The initial stages of dam-break flow, Journal of Fluid Mechanics, 370, 203-220.http://dx.doi.org/10.1017/S0022112098001918

Ting, F.C.K., and J.T. Kirby. 1994. Observation of undertow and turbulence in a laboratory surf zone, Coastal Engineering, 24(1-2), 51-80.http://dx.doi.org/10.1016/0378-3839(94)90026-4

Umlauf, L., and H. Burchard. 2003. A generic length-scale equation for geophysical turbulence models, Journal of Marine Research, 61(2), 235-265.http://dx.doi.org/10.1357/002224003322005087

Water Resources Agency, Ministry of Economic Affairs. 2009. The storm rainfall and flood during typhoon Morakot.

Wu, W., and S.S.Y. Wang. 2007. One-dimensional modeling of dam-break flow over movable beds, J Hydr Eng, 133(1), 48-58.http://dx.doi.org/10.1061/(ASCE)0733-9429(2007)133:1(48)


Full Text: PDF

Creative Commons License
This work is licensed under a Creative Commons Attribution 3.0 License.