TIDAL WAVE REFLECTION FROM THE CLOSURE DAM IN THE GUADALQUIVIR ESTUARY (SW SPAIN)

Manuel Díez-Minguito, Asunción Baquerizo, Miguel Ortega-Sánchez, Inmaculada Ruiz, Miguel Angel Losada

Abstract


Closure dams in estuaries and tidal areas have a strong impact on their hydrodynamics and morphology. Among other reasons, this impact can be due to tidal reflection. In the Guadalquivir estuary (SW Spain), data measured allowed to identify a partially standing motion along the upper third of the estuary. We estimate the frequency-dependent complex reflection coefficients at the head dam, and analyze the effect of the combined action of the incident and reflected tidal waves on the residual currents. Erosion-deposition patterns induced by the tidal reflection were identified. The most energetic tidal constituent, the semidiurnal M2, favors sedimentation near the entrance of the Port of Seville, where the most intense dredging works take place. Finally, we briefly discuss the potential consequences of reflection on the turbidity spatial distribution.

Keywords


Guadalquivir estuary; tidal reflection; dam; reflection coefficient; mass transport; morphodynamics

References


Álvarez, O., B. Tejedor, and J. Vidal. 2001. La dinámica de marea en el estuario del Guadalquivir: un caso peculiar de 'resonancia antrópica', Física de la Tierra, 13, 11–24.

Baquerizo, A. 1995. Wave Reflection on Beaches: Methods of Assessment and Forecasting, Ph.D. Thesis, University of Cantabria. In Spanish.

Baquerizo, A., M. A. Losada, J. Smith, and N. Kobayashi. 1997. Crossshore variation of wave reflection from beaches. Journal of Waterways, Port, Coastal, and Ocean Engineering, 123, 274.http://dx.doi.org/10.1061/(ASCE)0733-950X(1997)123:5(274)

Baquerizo, A., M.Á. Losada, and J.M. Smith. 1998. Wave reflection from beaches: A predictive model, Journal of Coastal Research, 14(1), 291-298.

Blanton, J. O., G. Lin, and S. A. Elston. 2002. Tidal current asymmetry in shallow estuaries and tidal creeks. Continental Shelf Research, 22, 1731–1743.http://dx.doi.org/10.1016/S0278-4343(02)00035-3

Bowers, D. G., and G. W. Lennon. 1990. Tidal progression in a near-resonant system--A case study from South Australia. Estuarine, Coastal and Shelf Science, 30(1), 17-34.http://dx.doi.org/10.1016/0272-7714(90)90074-2

Carter, T.G., P. L. F. Liu, and C. C. Mei. 1973. Mass transport by waves and offshore sand bedforms. Journal of the Waterways, Harbors and Coastal Engineering Division, 99(2), 165-184.

Díez-Minguito, M., A. Baquerizo, M. Ortega-Sánchez, G. Navarro, and M.Á. Losada. 2012. Tide transformation in the Guadalquivir estuary (SW Spain) and process-based zonation. Journal of Geophysical Research, 117, C3, C03019.

Díez-Minguito, M., E. Contreras, M. J. Polo, and M.Á. Losada. 2012. Spatio-temporal distribution, long-channel fluxes, and post-riverflood recovery of salinity in the Guadalquivir estuary (SW Spain). Submitted to the Journal of Geophysical Research.

Dou, X., X. Zhang, X. Wang, and X. Zhao. 2012. Numerical simulation study on deposition downstream estuarine sluice. Proceedings of 33rd International Conference on Coastal Engineering, ASCE. Santander. In press.

Dyer, K. R. 1997. Estuaries: A Physical Introduction. 2nd Edition. John Wiley & Sons Ltd. Chichester, UK.

Elias, E., M. Stive, H. Bonekamp, and J. Cleveringa. 2003. Tidal inlet dynamics in response to human intervention, Coastal Engineering Journal, 45(4), 629-658.http://dx.doi.org/10.1142/S0578563403000932

Friedrichs, C. T., and D. G. Aubrey. 1994. Tidal propagation in strongly convergent channels, Journal of Geophysical Research, 99(C2), 3321–3336.http://dx.doi.org/10.1029/93JC03219

Friedrichs, C. T., and O. S. Madsen. 1992. Nonlinear diffusion of the tidal signal in frictionally dominated embayments, Journal of Geophysical Research, 97, 5637–5650.http://dx.doi.org/10.1029/92JC00354

Hansen, D., and M. Rattray Jr, 1965. Gravitational circulation in straits and estuaries, Journal of Marine Research, 23(2), 104–122.

Losada, I., M. A. Losada, and A. Baquerizo. 1993. An analytical method to evaluate the efficiency of porous screens as wave dampers. Applied Ocean Research, 15(4), 207–215.http://dx.doi.org/10.1016/0141-1187(93)90009-M

Mansard, E.P.D., and E.R. Funke. 1980. The measurement of incident and reflected spectra using a least squares method, Proceedings of the 17th International Conference on Coastal Engineering, ASCE, 2, 154–172.

Navarro, G., F.J. Gutierrez, M. Díez-Minguito, M.Á. Losada, and J. Ruiz. 2011. Temporal and spatial variability in the Guadalquivir estuary: A challenge for real-time telemetry, Ocean Dynamics, 61(6), 753-765.http://dx.doi.org/10.1007/s10236-011-0379-6

Navarro, G., I.E. Huertas, E. Costas, S. Flecha, M. Díez-Minguito, I. Caballero, V. López-Rodas, L. Prieto, J. Ruiz. 2012. Use of a Real-Time Remote Monitoring Network (RTRM) to Characterize the Guadalquivir Estuary (Spain), Sensors, 12(2), 1398-1421.http://dx.doi.org/10.3390/s120201398

PMid:22438716 PMCid:3304118

Prandle, D., and M. Rahman. 1980. Tidal response in estuaries. Journal of Physical Oceanography, 10, 1552–1573.http://dx.doi.org/10.1175/1520-0485(1980)010<1552:TRIE>2.0.CO;2

Ruiz, J., and M. Á. Losada. (2010). Propuesta metodológica para diagnosticar y pronosticar las consecuencias de las actuaciones humanas en el estuario del Guadalquivir (in Spanish). Technical Report, Chapter 7.

Tatavarti, R., D. Huntley, and A. Bowen. 1988. Incoming and outgoing wave interactions on beaches. Coastal Engineering, ASCE, pp. 136–150.

Valle-Levinson, A. (Ed.) 2010. Contemporary Issues in Estuarine Physics. Cambridge University Press, UK.http://dx.doi.org/10.1017/CBO9780511676567

Wang, Z.B., and M. Fernández-Bermejo. 2010. Impact of fluvial sediment input to tidal amplification in an estuary. EGU General Assembly 2010, 12, 4868.

Wright, L., and A. Short. 1983. Morphodynamics of beaches and surf zones in Australia. Handbook of Coastal Processes and Erosion, CRC Press, pp. 35–64.

PMCid:1569301


Full Text: PDF

Creative Commons License
This work is licensed under a Creative Commons Attribution 3.0 License.