CEOHYDRAULIC INVESTIGATIONS OF RUBBLE MOUND BREAKWATERS

W. Burger, H. Oumeraci, H.W. Partenscky

Abstract


Due to the increase of ship sizes in recent decades a number of harbours and terminals have been built in deeper waters. Accordingly, the structures which have to provide protection against wave action become higher, too. In most cases, these protective structures are of the rubble mound type. Under such conditions the flow induced by waves within the breakwater and the related geotechnical behaviour of the rubble mound fill become more significant fcr the overall stability and should be considered in the design. In addition, it is known that the scales usually adopted in hydraulic models (1:30 to 1:60) for investigating the stability of large rubble mound breakwaters generally lead to scale effects with respect to the flow field inside the breakwater. This means that small-scale model tests are not appropriate for investigating the internal flow patterns or for evaluating the pore pressure field induced by the incident waves in,the core material. because of the uncontrolled conditions in the prototype, and since the actual permeability of the prototype rubble mound fill cannot be predicted (segregation, settlement, variation in grading, etc.), the use of large-scale physical models seems to be the most promising method for basic investigations of this kind. Moreover, the results of such largescale model tests may be used to validate the usual smaller scale models and to calibrate numerical models. Therefore, it is one of the objectives of our research programme on rubble mound breakwaters, which started in 1987, to concentrate on the evaluation of the wave-induced flow and pore pressure distribution within the breakwater.

Keywords


breakwater; rubble mound breakwater; geohydraulic investigation

Full Text: PDF

Creative Commons License
This work is licensed under a Creative Commons Attribution 3.0 License.