Shigeki Sakai, Kouestu Hiyamizu, Hiroshi Saeki


Transformation of irregular waves affected by opposing currents on a sloping sea bed was discussed, experimentally and theoretically. It was found that representative values of wave height, such as a significant wave height, are larger before breaking and the wave height decaying occurs more promptly in a surf zone as opposing currents become dominant, and that characteristics of a irregular wave transformation are determined by the dimensionless unit width discharge q* and the deep water wave steepness. This means that the effects of opposing currents on irregular wave transformation are qualitatively identical to that on the regular waves. A transformation model of irregular waves affected by opposing currents was presented. In the model, formulations for a regular wave transformation, in which the effects of opposing currents were taken into account, were applied to individual waves defined by zero-down" cross-method from irregular wave profiles. Comparisons between experimental results and the prediction by the model showed that the present model gives a good explanation for wave height distributions and the experimental finding that the surf zone is moved offshore by opposing currents.


irregular wave; wave transformation; current; opposing current

Full Text: PDF

Creative Commons License
This work is licensed under a Creative Commons Attribution 3.0 License.