MODELING TURBULENT BORE PROPAGATION IN THE SURF ZONE

David R. Basco, Ib A. Svendsen

Abstract


Initial efforts to numerically simulate surf zone waves by using a modified form of the nonlinear shallow water equations are described. Turbulence generated at the front of the moving bore-like wave spreads vertically downward to significantly alter the velocity profile and hence the horizontal momentum flux. This influence of turbulence is incorporated into the momentum balance equation through a momentum correction coefficient, a which is prescribed based in part upon the theoretical a(x) distribution beneath stationary hydraulic jumps. The numerical results show that with a suitably chosen a(x) distribution, the equations not only dissipate energy as the waves propagate, but also that the wave shape stabilizes as a realistic profile rather than progressively steepening as when the nonlinear shallow water equations are employed. Further research is needed to theoretically determine the appropriate a(x,t) distribution.

Keywords


bore; bore modeling; surf zone; bore propagation

Full Text: PDF

Creative Commons License
This work is licensed under a Creative Commons Attribution 3.0 License.