Rodney J. Sobay


Australia's Coral Sea coast from Bundaberg north to Cape York has a wind wave climate that is almost unique. The coastline is afforded unparalleled protection from the 1900 km Great Barrier Reef, yet it lies in a tropical cyclone region and must expect recurrent intense wind and wave conditions. The Great Barrier Reef is a continuous chain of quite separate coral reef clusters located near the edge of the continental shelf. The separate reefs are often exposed at low tide, the inner fringe of the clusters ranges from 10 km offshore north of Cairns to 200 km offshore south of Rockhampton and the outer fringe is typically some 50 km further offshore, beyond which the ocean bed drops rapidly away. Incident wave energy from the Coral Sea is invariably dissipated on the outer edge of the Reef and wave conditions on the continental shelf can reasonably be considered due to local wind conditions. The Reef imposes an effective fetch limitations on wave generation over the continental shelf and there is, as a consequence, a moderately rapid response of wave conditions to changes in local wind conditions. A pronounced diurnal variation in the wind climate is reflected also in the wave climate and the stability of the region's tropical climate leads to frequent calm to slight sea conditions. This stability however is occasionally exploded by the generation and passage of a tropical cyclone in mid to late summer. Large waves can be generated by the intense winds of the tropical cyclone (hurricane or typhoon), often an order of magnitude greater than those in response to non-cyclonic events. The rational design of coastal structures and the rational pursuit of coastal zone management requires appropriate estimates of the frequency of occurrence of waves of various heights. Ideally such information is obtained from an extreme value analysis of long term wave records at the particular site in question. Permanent wave recording programs unfortunately have only become common practice in the present decade and wave records, if they exist at all for a particular site, are rarely long enough to allow a satisfactory extreme value analysis. It is clear, in the Australian context at least, that historical wave data alone is not yet sufficient to derive satisfactory estimates of long term wave frequencies. The alternative is system modelling. Wind is a major meteorological variable and its long term recording has been a standard meteorological practice now for over half a century.


wind wave; wave frequency; cyclone; tropical cyclone region

Full Text: PDF

Creative Commons License
This work is licensed under a Creative Commons Attribution 3.0 License.