WAVE FORCES ON SUBMERGED OBJECTS

Suphat Vongvisessomjai, Richard Silvester

Abstract


Limitations of the Morison equation for computing wave forces on small submerged structures have encouraged the use of dimensionless relationships containing only height, period and water depth. However in dividing the force by the theoretical drag force or inertia force a relationship can be found with the Keulegan parameter (U. T/D) over a wide range of conditions and different types of wave. The U. value can be determined from empirical and theoretical data for all depths and wave steepnesses. The relating coefficients for various dimensions and shapes of submerged object are predictable from potential theory or modified slightly because of viscous and such other forces induced by bottom and free surface boundaries. For computing wave forces on a submerged object which is large compared to the wave length, the Morison equation is replaced by the Diffraction theory. Criteria for selecting the latter theory are presented.

Keywords


wave forces; submerged object

Full Text: PDF

Creative Commons License
This work is licensed under a Creative Commons Attribution 3.0 License.