FORCES ON ROUGH-WALLED CIRCULAR CYLINDERS

Turgut Sarpkaya

Abstract


This paper presents the results of an extensive experimental investigation of the in-line and transverse forces acting on sand-roughened circular cylinders placed in oscillatory flow at Reynolds numbers up to 1,500,000, Keulegan-Carpenter numbers up to 100, and relative roughnesses from 1/800 to 1/50. The drag and inertia coefficients have been determined through the use of the Fourier analysis and the least squares method. The transverse force (lift) has been analysed in terms of its maximum and root-mean-square values. In addition, the frequency of vortex shedding and the Strouhal number have been determined. The results have shown that all of the coefficients cited above are functions of the Reynolds number, Keulegan-Carpenter number, and the relative roughness height. The results have also shown that the effect of roughness is quite profound and that the drag coefficients obtained from tests in steady flow are not applicable to harmonic flows even when the loading is predominantly drag.

Keywords


rough walls; wave forces; cylinder

Full Text: PDF

Creative Commons License
This work is licensed under a Creative Commons Attribution 3.0 License.