MEDIUM-TERM MORPHODYNAMIC MODELING OF MIXED MUD AND SAND IN THE
Proceedings of the 32nd International Conference
PDF

Keywords

morphodynmic modeling
cohesive sediment transport
initial grain size distribution

How to Cite

Witting, M., Wehmeyer, C., & Niemeyer, H. D. (2011). MEDIUM-TERM MORPHODYNAMIC MODELING OF MIXED MUD AND SAND IN THE. Coastal Engineering Proceedings, 1(32), sediment.65. https://doi.org/10.9753/icce.v32.sediment.65

Abstract

A morphodynamic model for the Jadebusen basin based on the current DELFT3D model is established. With morphological information such as qualitative measurements of SPM-concentration (Suspended Particular Matter) and bottom change estimates as well as detailed surveys of a sand pit refilling process the model parameters for cohesive transport (Partheniades 1965) are calibrated. Within a period of 8 month, which is condensed to a representative period of 28 days for the modeling, almost 45% of the initial pit volume was refilled with mud. Despite the lack of specific field measurements a setup of mud transport parameters can be defined, which allows further investigations of sand pit locations in the Jadebusen basin. On major outcome is that critical erosion shear stresses for mud should be spatially varied in order to account for the different consolidation states of the mud fraction. Furthermore the paper addresses the problem of the initial grain size distribution for graded sediment transport. Wadden flat types are characterized based on aerial observations which build the underlying information for a relocation model run.
https://doi.org/10.9753/icce.v32.sediment.65
PDF

References

Boon, J. & Kerkamp, H. & Dardengo, L. 2002. Alternative Dumping Sites in the Ems-Dollard Estuary, Model Study, WL|Delft Hydraulics Z3328

Dankers. 2002. The Behavior of fines released due to dredging. A literature review. TU DELFT, Hydraulic Engineering Section, Faculty of Civil Engineering and Geosciences, Delft University of Technology. Delft.

DELFT3D MANUAL. 2006. WL|Delft Hydraulics: Delft3d-Flow. User-Manual, version 3.10.WL|Delft Hydraulics. Delft.

Escobar, C.A. & Mayerle R. 2006. Procedures for improving the prediction of equilibrium grain sizes, bed forms and roughness in tidally-dominated Areas. Proc. Of 30th Int. Conf. On Coast. Engr., San Diego.

Hirschhäuser, T., Mewis, P., Zanke, U. 1998. Determination of initial particle size distribution for morphodynamic modeling in tidal area, Proc. of 3. Int. Conference on Hydrosc. and Engr., Cottbus

Meyer, C. & Ragutzki, G. 1999. KFKI Forschungsvorhaben Sedimentverteilung als Indikator fur morphodynamische Prozesse, MTK 0591, Dienstbericht Forschungsstelle Kuste 21/1999.

Niedersächsisches Landesamt fur Ökologie (in german), Internal Report Panagiotopoulos, I. & Voulgaris, G. & Collins, M.B. 1997. The influence of clay on the threshold of movement of fine sandy beds. Coastal Engineering, 32: 19-43. In Dankers (2002).

Partheniades, E. 1965. Erosion and deposition of cohesive soils, Journal of the Hydraulic Division, Vol. 91, No.1, S.105 - 139.

Partheniades, E. 1980. Cohesive sediment transport mechanics and estuarine sedimentation. In Dankers (2002).

Sandford, L.P. & Maa J.P.-Y. 2001. A unified erosion formulation for fine sediments. Marine Geology, 179, 9-23. In Dankers (2002).

Torfs, H. & Mitchener, H. 1995. Erosion of sand/mud mixtures. Coastal Engineering, 29: 1-25. In Dankers (2002).

Torfs, H. & Mitchener, H. & Hysentruyt, H. & Toorman, E. 1996. Settling and Consolidation of sand/mud mixtures. Coastal Engineering, 29: 27-45. http://dx.doi.org/10.1016/S0378-3839(96)00013-0

Van Ledden 2001. Modelling of sand-mud mixtures, Part II: A process-based sand-mud model. Z2840 - collaboration between "Zand-slib" project at WL|Delft Hydraulics and Ph.D. project "Large scale segregation in estuaries and tidal lagoons" at Delft University of Technology. Delft

Van Rijn, L.C. 1993. Principles of Sediment Transport in Rivers, Estuaries and Coastal Seas. Aqua Publications. Delft. PMCid:1005200

Winterwerp, J.C. & van Kesteren, G.M., 2004. Introduction to the physics of cohesive sediment in the marine environment, Developments in Sedimentology 56, Elsevier

Witting, M., Zanke, U., Mewis, P., 2004. Multiple grain size morphodynamic modeling at Teigmouth (UK), Proc. 5th Int. Conference on Hydroscience and Engineering (ICHE), Brisbane.

Authors retain copyright and grant the Proceedings right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this Proceedings.