PARAMETRIC WAVE-BREAKING ON STEEP REEFS

Shih-Feng Su, Alex Sheremet, Jane McKee Smith

Abstract


A numerical model based on a nonlinear mild-slope equation, and modified to account for wave dissipation due to breaking is applied to investigate the transformation of the wave spectrum over a fringing reef. The three parameters (γ, B, F) of the breaking model are calibrated for the best fit between the spectral shapes observed and modeled using an inverse modeling approach. The relationship between optimal values for γ and B derived from numerical simulations and other parameters characterizing wave and slope conditions (e.g., deep-water wave steepness, wave dispersivity, nonlinearity parameter) are investigated with the goal of formulating guidelines for the selection of adequate values. The results of this study disagree significantly with previously-proposed empirical relations between γ and the deep-water wave steepness, but show good agreement with empirical relations relating γ to other parameters. The breaking intensity parameter B shows a largely linear dependency on the nonlinearity parameter.

Keywords


nonlinear waves; wave breaking; coral reef; wave modeling

References


Agnon, Y., and A. Sheremet. 1997. Stochastic nonlinear shoaling of directional spectra, J. Fluid Mech., 345, 79–99. http://dx.doi.org/10.1017/S0022112097006137

Baldock, T. E., P. Holmes, S. Bunker, and P. Van Weert. 1998. Cross-shore hydrodynamics within an unsaturated surf zone, Coast. Eng., 34, 173–196. http://dx.doi.org/10.1016/S0378-3839(98)00017-9

Battjes, J. A. 1974. Surf similarity, Proc. 14th Int. Conf. Coastal Engineering, ASCE, 466–480.

Battjes, J. A., and M. J. F. Stive. 1985. Calibration and verification of a dissipation model for random breaking waves, J. Geophys. Res., 90(C5), 9159–9167. http://dx.doi.org/10.1029/JC090iC05p09159

Chen, Y., R. T. Guza, and S. Elgar. 1997. Modeling spectra of breaking surface waves in shallow water, J. Geophys. Res., 102(C11), 25035–25046. http://dx.doi.org/10.1029/97JC01565

Demirbilek, Z., O. G. Nwogu, and D. L. Ward. 2007. Laboratory study of wind effect on runup over fringing reefs, Report 1: Data Report, ERDC/CHL-TR-07-4, Vickburg, MS: U.S. Army Engineer Research and Development Center.

Gourlay, M. R. 1994. Wave transformation on a coral reef, Coast. Eng., 23, 17–42. http://dx.doi.org/10.1016/0378-3839(94)90013-2

Hardy, T. A., and I. R. Young. 1996. Field study of wave attenuation on an offshore coral reef, J. Geophys. Res., 101(C6), 14311–14326. http://dx.doi.org/10.1029/96JC00202

Janssen, T. T., and J. A. Battjes. 2007. A note on wave energy dissipation over steep beaches, Coast. Eng., 54(9), 711–716. http://dx.doi.org/10.1016/j.coastaleng.2007.05.006

Kaihatu, J. M., and J. T. Kirby. 1995. Nonlinear transformation of waves in finite water depth, Phys. Fluids, 7, 1903–1914. http://dx.doi.org/10.1063/1.868504

Lowe, R. J., J. L. Falter, M. D. Bandet, G. Pawlak, M. J. Atkinson, S. G. Monismith, and J. R. Koseff. 2005. Spectral wave dissipation over a barrier reef, J. Geophys. Res., 110, C04001, doi:10.1029/2004JC002711. http://dx.doi.org/10.1029/2004JC002711

Mase, H., and J. Kirby. 1992. Hybrid frequency-domain KdV equation for random wave transformation, Proc. 23rd Int. Conf.Coastal Engineering, ASCE, 474–482.

Massel, S. R., and M. R. Gourlay. 2000. On the modelling of wave breaking and set-up on coral reefs, Coast. Eng., 39, 1–27. http://dx.doi.org/10.1016/S0378-3839(99)00052-6

Nelson, R.C. 1994. Depth limited design wave heights in very flat regions, Coast. Eng. 23, 43–59. http://dx.doi.org/10.1016/0378-3839(94)90014-0

Nairn, R. B. 1990. Prediction of cross-shore sediment transport and beach profile evolution, Ph.D. thesis, Imperial College, London, 391 pp.

Péquignet, A. C. N., J. M. Becker, M. A. Merrifield, and J. Aucan. 2009. Forcing of resonant modes on a fringing reef during tropical storm Man-Yi, Geophys. Res. Lett., 36(L03607), doi:10.1029/2008GL036259. http://dx.doi.org/10.1029/2008GL036259

Raubenheimer, B., R. T. Guza, and S. Elgar. 1996. Wave transformation across the inner surf zone, J. Geophys. Res., 101, 25589–25597. http://dx.doi.org/10.1029/96JC02433

Roelvink, J. A. 1993. Dissipation in random wave groups incident on a beach, Coast. Eng., 19, 127–150. http://dx.doi.org/10.1016/0378-3839(93)90021-Y

Ruessink, B. G., D. J. R. Walstra, and H. N. Southgate. 2003. Calibration and verification of a parametric wave model on barred beaches, Coast. Eng., 48, 139–149. http://dx.doi.org/10.1016/S0378-3839(03)00023-1

Sallenger, A. H., and R. A. Holman. 1985. Wave energy saturation on a natural beach of variable slope, J. Geophys. Res., 90, 11939–11944. http://dx.doi.org/10.1029/JC090iC06p11939

Samosorn, B., and C. D. Woodroffe. 2008. Nearshore wave environments around a sandy cay on a platform reef, Torres Strait, Australia, Cont. Shelf Res., 28, 2257–2274. http://dx.doi.org/10.1016/j.csr.2008.03.043

Singamsetti, S. R., and E. G. Wind. 1980. Breaking waves: characteristics of shoaling and breaking periodic waves normally incident to plane beaches of constant slope, 80 pp., Delft Hydraulic Laboratory.

Thornton, E. B., and R. T. Guza. 1983. Transformation of wave height distribution, J. Geophys. Res., 88(10), 5925–5938. http://dx.doi.org/10.1029/JC088iC10p05925

Young, I. R. 1989. Wave transformation over coral reefs, J. Geophys. Res., 94(C7), 9779–9789. http://dx.doi.org/10.1029/JC094iC07p09779


Full Text: PDF

Creative Commons License
This work is licensed under a Creative Commons Attribution 3.0 License.