INFLUENCE OF TURBULENCE CLOSURE ON ESTUARINE SEDIMENT DYNAMICS AND MORPHODYNAMICS

Laurent Amoudry, Alejandro Souza

Abstract


Turbulence significantly impacts hydrodynamics, mixing and sediment dynamics in coastal environments. We employ a three-dimensional model, the Proudman Oceanographic Laboratory Coastal Ocean Modeling System (POLCOMS), to investigate the effects of implementing various turbulence closure schemes on sediment dynamics and morphodynamics. This model is applied to an idealized estuary, which is represented by a straight rectangular basin. A simple tidal flow is forced at one end and a constant river flow is imposed at the other. Most of the turbulence closure schemes employed are implemented via coupling to the General Ocean Turbulence Model (GOTM). Their effects are also compared to the impact of different erosion parameterizations on the numerical results and observed for different sediment properties.

Keywords


estuarine sediment transport; sediment transport modeling; morphological modeling; turbulence modeling; sediment erosion

References


Allen, G.P., J.C. Salomon, P. Bassoullet, Y. Du Penhoat and C. De Grandpré. 1980. Effects of tides on mixing and suspended sediment transport in macrotidal estuaries, Sedimentary Geology, 26, 69-90. http://dx.doi.org/10.1016/0037-0738(80)90006-8

Amoudry, L.O., A.J. Souza and J.T. Holt. 2009. Sediment transport module for a B-grid coastal shelf ocean model, Proceedings of Coastal Dynamics 2009: Impacts of human activities on dynamic coastal processes, World Scientific, Canuto, V.M., A. Howard, Y. Cheng, and M.S. Dubovikov. 2001. Ocean turbulence. Part I: One-point closure model – momentum and heat vertical diffusivities, Journal of Physical Oceanography, 31, 1413-1426.

Eifler, W. and W. Schrimpf. 1992. ISPRAMIX, a hydrodynamic program for computing regional sea circulation patterns and transfer processes, European Commission Joint Research Center, Ispra, Italy, Tech. Rep. EUR 14856 EN.

Flather, R. A. 1981. Results from a model of the northeast Atlantic relating to the Norwegian coastal current, in The Norwegian Coastal Current, vol 2, eds: R. Saetre and M. Mork, Bergen Univ., Bergen, Norway, 427-458.

Galperin, B., L. H. Kantha, S. Hassid and A. Rosati. 1988. A quasi-equilibrium turbulent energy model for geophysical flows, J. Atmos. Sci., 45 (1), 55-62. http://dx.doi.org/10.1175/1520-0469(1988)045<0055:AQETEM>2.0.CO;2

Holt, J.T., and I.D. James. 2001. An s coordinate density evolving model of the northwest European continental shelf I, model description and density structure, Journal of Geophysical Research, 106 (C7), 14015-14034.http://dx.doi.org/10.1029/2000JC000304

Holt, J., and L. Umlauf. 2008. Modelling the tidal mixing fronts and seasonal stratification of the Northwest European continental shelf, Continental Shelf Research, 28, 887-903. http://dx.doi.org/10.1016/j.csr.2008.01.012

Lesser, G.R., J.A. Roelvink, J. van Kester, and G.S. Stelling. 2004. Development and validation of a three-dimensional morphological model, Coastal Engineering, 51 (8-9), 883-915. http://dx.doi.org/10.1016/j.coastaleng.2004.07.014

Meade, R.H. 1969. Landward transport of bottom sediments in estuaries of the Atlantic coastal plain, J. Sedimentary Petrology, 39, 222-234.

Munk, W.H. and E.R. Anderson. 1948. Notes on a theory of the thermocline, J. Mar. Res., 7, 276-295.

Pope, S.B. 2000. Turbulent flows, 1 st edition, Cambridge University Press, New York, USA.

Postma, H. 1967. Sediment transport and sedimentation in the estuarine environment, Estuaries, ed: G.H. Lauff, Am. Assoc. for the Adv. of Sci., 158-179.

Puleo, J.A., O. Mouraenko and D.M. Hanes. 2004. One-dimensional wave bottom boundary layer model comparison: specific eddy viscosity and turbulence closure models, J. Waterways Port Coastal and Ocean Eng, 130, doi:10.1061/(ASCE)0733-950X(2004)130:6(322) http://dx.doi.org/10.1061/(ASCE)0733-950X(2004)130:6(322)

Rodi, W. 1987. Examples of calculation methods for flow and mixing in stratified fluids, Journal of Geophysical Research, 92 (C5), 5305-5328. http://dx.doi.org/10.1029/JC092iC05p05305

Sanford, L.P., S.E. Suttles and J.P. Halka. 2001. Reconsidering the physics of the Chesapeake Bay estuarine turbidity maximum, Estuaries, 24, 655-669. http://dx.doi.org/10.2307/1352874

Schubel, J.R. 1968. Turbidity maximum of the northern Chesapeake Bay, Science, 161, 1013-1015. PMid:17812801http://dx.doi.org/10.1126/science.161.3845.1013

Schumann, U. and T. Gerz. 1995. Turbulent mixing in stably stratified flows, J. Appl. Meteorol., 34, 33-48.http://dx.doi.org/10.1175/1520-0450-34.1.33

Souza, A.J. and I.D. James. 1996. A two dimensional (x-z) model of tidal straining in the Rhine ROFI, Continental Shelf Research, 16, 949-966.http://dx.doi.org/10.1016/0278-4343(95)00033-X

Umlauf, L., H. Burchard, and K. Hutter. 2003. Extending the k-ω turbulence model towards oceanic applications, Ocean Modelling, 5, 195-218. http://dx.doi.org/10.1016/S1463-5003(02)00039-2

Umlauf, L., K. Bolding, and H. Burchard. 2005. GOTM – Scientific Documentation, Version 3.2, No 63 of Marine Science Reports, Leibniz-Institute for Baltic Sea Research, Warnemünde, Germany.

van Rijn, L.C. 1993. Principles of sediment transport in rivers, estuaries, and coastal seas, Aqua Publications, Amsterdam. PMCid:1005200

van Rijn, L.C. 2007. Unified view of sediment transport by currents and waves. II: Suspended transport, J. Hydr. Eng., 133, 6, 668-689. http://dx.doi.org/10.1061/(ASCE)0733-9429(2007)133:6(668)

Warner, J.C., C.R. Sherwood, H.G. Arango and R.P. Signell. 2005. Performance of four turbulence closure models implemented using a generic length scale method, Ocean Modelling, 8, 81-113. http://dx.doi.org/10.1016/j.ocemod.2003.12.003


Full Text: PDF

Creative Commons License
This work is licensed under a Creative Commons Attribution 3.0 License.