STORM SURGE IN SETO INLAND SEA WITH CONSIDERATION OF THE IMPACTS OF WAVE BREAKING ON SURFACE CURRENTS

Han Soo Lee, Takao Yamashita, Tomoaki Komaguchi, Toyoaki Mishima

Abstract


Storm surge and storm wave simulations in Seto Inland Sea (SIS) in Japan were conducted for Typhoon Yancy (9313) and Chaba (0416) using an atmosphere (MM5)-wave (SWAN)-ocean (POM) modeling system. In the coupled modeling system, a new method for wave-current interaction in terms of momentum transfer due to whitecapping in deep water and depth-induced wave breaking in shallow water was considered. The calculated meteorological and wave fields show good agreement with the observations in SIS and its vicinities. The storm surge results also exhibit good accordance with the observations in SIS. To resolve a number of islands in SIS, we also performed numerical experiments with different grid resolutions and obtained improved results from higher resolutions in wave and ocean circulation fields.

Keywords


Seto Inland Sea; storm surge; atmosphere-wave-ocean coupled model; air-sea interaction; whitecapping; depth-induced wave breaking

References


Booij, N., I. G. Haagsma, L. H. Holthuijsen, A. T. M. M. Kieftenburg, R. C. Ris, A. J. v. d. Westhuysen, and M. Zijlema. 2004. SWAN User Manual, SWAN Cycle III version 40.41, Delft University of Technology.

Cavaleri, L., J. H. G. M. Alves, F. Ardhuin, A. Babanin, M. Banner, K. Belibassakis, M. Benoit, M. Donelan, J. Groeneweg, T. H. C. Herbers, P. Hwang, P. A. E. M. Janssen, T. Janssen, I. V. Lavrenov, R. Magne, J. Monbaliu, M. Onorato, V. Polnikov, D. Resio, W. E. Rogers, A. Sheremet, J. McKee Smith, H. L. Tolman, G. van Vledder, J. Wolf, and I. Young. 2007. Wave modeling -The state of the art, Progress In Oceanography, 75(4), 603-674. http://dx.doi.org/10.1016/j.pocean.2007.05.005

Deigaard, R. 1993. A note on the three-dimensional shear stress distribution in a surf zone, Coastal Engineering, 20(1-2), 157-171.http://dx.doi.org/10.1016/0378-3839(93)90059-H

Edson, J., T. Crawford, J. Crescenti, T. Farrar, N. Frew, G. Gerbi, C. Helmis, T. Hristov, D. Khelif, A. Jessup, H. Jonsson, M. Li, L. Mahrt, W. McGillis, A. Plueddemann, L. Shen, E. Skyllingstad, T. Stanton, P. Sullivan, J. Sun, J. Trowbridge, D. Vickers, S. Wang, Q. Wang, R. Weller, J. Wilkin, A. J. Williams, D. K. P. Yue, and C. Zappa. 2007. The Coupled Boundary Layers and Air-Sea Transfer Experiment in Low Winds, B. Am. Meteorol. Soc., 88(3), 341-356. http://dx.doi.org/10.1175/BAMS-88-3-341

Fabrice Ardhuin, Alastair D. Jenkins, DaniƩle Hauser, Ad Reniers, and B. Chapron. 2005. Waves and Operational Oceanography: Toward a Coherent Description of the Upper Ocean, EOS, Transactions, 86(4), 37-44.

Grell, G. A., J. Dudhia, and D. R. Stauffer. 1995. A description of the fifth-generation Penn State/NCAR Mesoscale Model (MM5)Rep., National Center for Atmospheric Research, NCAR Tech. Note, NCAR/TN-398 + STR.

IOC, IHO, and BODC. 2003. Centenary Edition of the GEBCO Digital Atlas, published on CD-ROM on behalf of the Intergovernmental Oceanographic Commission and the International Hydrographic Organization as part of the General Bathymetric Chart of the OceansRep., British Oceanographic Data Centre, Liverpool, U.K.

James Edson, T. P., Scott Sandgathe, Linwood Vincent, Louis Goodman, Tom, J. H. Curtin, Marie Colton, E. A. Steven Anderson, Stephen Burk, Shuyi Chen, Gennaro Crescenti, Eric D'Asaro, M. D. Kenneth Davidson, James Doyle, David Farmer, Ann Gargett, Hans Graber, Dale, J. K. Haidvogel, Larry Mahrt, Michiko Martin, Julie McClean, Wade McGillis, Sean, J. M. McKenna, Peter Niiler, David Rogers, Eric Skyllingstad, Peter Sullivan, and a. J. W. Robert Weller. 1999. Coupled Marine Boundary Layers and Air-Sea Interaction Initiative: Combining Process Studies, Simulations, and Numerical Models, edited, p. 140.

Kim, K. O., H. S. Lee, T. Yamashita, and B. H. Choi. 2008. Wave and storm surge simulations for Hurricane Katrina using coupled process based models, KSCE Journal of Civil Engineering,12(1), 1-8.http://dx.doi.org/10.1007/s12205-008-8001-2

Kitaigorodskii, S., and J. Lumley. 1983. Wave-turbulence interactions in the upper ocean. part I: The energy balance of the interacting fields of surface wind waves and wind-induced three-dimensional turbulence, J. Phys. Oceanogr., 13(11), 1977-1987. http://dx.doi.org/10.1175/1520-0485(1983)013<1977:WTIITU>2.0.CO;2

Lee, H. S., and T. Yamashita. 2009. Study on wind-wave-current interaction process in shallow water dynamics, Asian and Pacific Coasts 2009, 3, 65-72.

Lee, H. S., T. Yamashita, and T. Komaguchi. 2008. Reanalysis of past major storms in West Kyusyu and study of wind-induced current in Ariake Sea, Journal of International Development and Cooperation, 14(2), 19-36.

Lee, H. S., T. Yamashita, T. Komaguchi, and T. Mishima. 2009. Reanalysis of Typhoon Meteorological Fields and Related Waves and Surges in the Seto Inland Sea, Journal of Japan Society of Civil Engineers, Ser. B2 (Coastal Engineering), 65(1), 441-445.

Longuet-Higgins, M. S., and R. W. Stewart. 1964. Radiation stresses in water waves; a physical discussion, with applications, Deep Sea Research and Oceanographic Abstracts, 11(4), 529-562. http://dx.doi.org/10.1016/0011-7471(64)90001-4

Matsumoto, K., T. Takanezawa, and M. Ooe. 2000. Ocean Tide Models Developed by Assimilating TOPEX/POSEIDON Altimeter Data into Hydrodynamical Model: A Global Model and a Regional Model Around Japan, Journal of Oceanography, 56, 567-581. http://dx.doi.org/10.1023/A:1011157212596

Mellor, G. L. 2004. Users guide for a three-dimensional, primitive equation, numerical ocean modelRep., 53 pp, Prog. in Atmos. And Ocean. Sci.

Nairn, R. B., J.A. Roelvink, and H. N. Southgate. 1990. Transition zone width and implications for modeling surfzone hydrodynamics, Proc. 22nd International Conference on Coastal Engineering, 68-81. Onogi, K., J. Tsutsui, H. Koide, M. Sakamoto, S. Kobayashi, H. Hatsushika, T. Matsumoto, N. Yamazaki, H. Kamahori, K. Takahashi, S. Kadokura, K. Wada, K. Kato, R. Oyama, T. Ose, N.

Mannoji and R. Taira 2007. The JRA-25 Reanalysis, J. Meteor. Soc. Japan, 85, 369-432.Polnikov, V. G., and P. Tkalich. 2006. Influence of the wind waves dissipation processes on dynamics in the water upper layer, Ocean Modeling, 11(1-2), 193-213.

Qiao, F., Y. Yuan, Y. Yang, Q. Zheng, C. Xia, and J. Ma. 2004. Wave-induced mixing in the upper ocean: Distribution and application to a global ocean circulation model, Geophysical Research Letters, 31(11), L11303. http://dx.doi.org/10.1029/2004GL019824

Rogers, W. E., W. W. David, and A. H. Paul. 2003. Investigation of Wave Growth and Decay in the SWAN Model: Three Regional-Scale Applications, J. Phys. Oceanogr., 33(2), 366-389 http://dx.doi.org/10.1175/1520-0485(2003)033<0366:IOWGAD>2.0.CO;2

Tkalich, P., and E. Chan. 2002. Breaking wind waves as a source of ambient noise, The Journal of the Acoustical Society of America, 112, 456. PMid:12186026http://dx.doi.org/10.1121/1.1489436


Full Text: PDF

Creative Commons License
This work is licensed under a Creative Commons Attribution 3.0 License.