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  A FULLY NONLINEAR BOUSSINESQ MODEL FOR WATER WAVE PROPAGATION  

Hong-sheng ZHANG1, Hua-wei ZHOU1, Guang-wen HONG2, Jian-min YANG1

A set of high-order fully nonlinear Boussinesq-type equations is derived from the Laplace equation and the nonlinear 
boundary conditions. The derived equations include the dissipation terms and fully satisfy the sea bed boundary 
condition. The equations with the linear dispersion accurate up to [2,2] padé approximation is qualitatively and 
quantitatively studied in details. A numerical model for wave propagation is developed with the use of iterative 
Crank-Nicolson scheme, and the two-dimensional fourth-order filter formula is also derived. With two test cases 
numerically simulated, the modeled results of the fully nonlinear version of the numerical model are compared to 
those of the weakly nonlinear version. 
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 INTRODUCTION 
It is well known that the Boussinesq-type equations are powerful tools to accurately estimate 

the wave conditions in the near-shore zone. Because they are nonlinear, they can simulate the 
propagation of large waves with the effects of topography and the nonlinear wave-wave interactions. A 
large number of researchers (e.g. Peregrine, 1967; Madsen et al. 1991; Nwogu, 1993; Chen and 
Liu,1995; Wei et al. 1995; Hong,1997; Agnon et al., 1999;Zou, 1999; Gobbi et al. 2000; Madsen et al., 
2002) derived or improved different Boussinesq-type equations. It should be particularly mentioned 
that Hong(1997) presented high-order models with the dissipative terms for non-linear and dispersive 
wave. Almost at the same time, the different numerical models with the Boussinesq-type equations 
employed as the governing equations are developed or improved. Most of the numerical models(e.g. 
Abott et al., 1984; Madsen et al.1991; Nwogu, 1993; Wei and Kirby, 1995; Zhang et al.,2001; Shi et 
al.2001; Zhang et al.2010) are provided with the use of the finite difference method in the Cartesian 
coordinates. A review on the various numerical models has been given by Zhang et al.(2010). 

In this paper, with the wave velocity potential function expressed as a function defined at an 
arbitrary water level, a set of fully nonlinear Boussinesq-type equations is derived from the Laplace 
equation and the nonlinear boundary conditions. The derived set of equations includes the dissipative 
terms and fully satisfies the sea bottom boundary condition. The equations with the linear dispersion 
relation accurate up to [2,2] padé approximation is qualitatively and quantitatively studied in details. 
The nonlinear characteristics are compared between the present fully nonlinear equations and the 
weakly nonlinear ones. A numerical model for wave propagation is described, and a two-dimension 
fourth order filter formula is also provided in this paper. With two test cases numerically simulated, the 
modeled results of the fully nonlinear version of the numerical model are compared to those of the 
weakly nonlinear version. This indicates that the effects of strong nonlinear terms on wave propagation 
are studied quantitatively. 

 MATHEMATICAL MODEL 

Formulations in Non-dimensional Forms and Formal Solutions  
A Cartesian coordinate system ( )* * *, ,x y z  is adopted, with z∗  measured upwards from the 

still water level. Consider a three-dimensional wave field with water surface elevation ( )* * *, ,x y tη∗  at 

time t∗ , propagating over a varying depth ( )* *,h x y∗ . The fluid is assumed to be inviscid and 

incompressible, and the flow is assumed to be ir-rotational. The wave velocity ( )* * * *, , ,x y z tϕ∗  
satisfies the Laplace equation, the conditions on the free surface boundary and the sea bed boundary. 
According to the non-linear wave theory, the following non-dimensional variables are defined as: 
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where  L  and d  are the characteristic wave length and water depth, respectively; g is the 
acceleration of gravity ; ρ  is the water density; 0c  is the wave celerity; *W  is dissipative coefficient; 

,
x y

 ∂ ∂
∇ =  ∂ ∂ 

 is the non-dimensional gradient operator; 
d
L

µ =  and 
a
d

ε = , where a is the 

characteristic amplitude. Then, the Laplace equation becomes: 
0,zz h zβ ϕ ϕ εη∇ ⋅∇ + = −                                               (2) 

The boundary condition at the sea bed can be written as: 
0, ( , )z h z h x yϕ β ϕ+ ∇ ⋅∇ = = −                                              (3) 

The kinematic boundary condition on the free surface can be written as: 
( ) 0,t z zβ η ε ϕ η ϕ εη+ ∇ ⋅∇ − = =                                                  (4) 

The dynamic boundary condition on the free surface can be written as: 

        21 *( *)[( ) ,
2 z

C tw z
t gd

εη ϕ ε ϕ ϕ ϕ εη
β ε

 ∂
+ + + ∇ ⋅∇ + = = ∂  

             (5) 

When η  is eliminated in these two equations, the kinematic-dynamic boundary condition on the free 
surface can be combined as: 
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µ

βε ϕ ϕ ϕ
ε

 ∂ ∂ + + + + ∇ ⋅∇ +   
∂ ∂   

∂
+ ∇ ⋅∇ ∇ ⋅∇ =

∂

                   (6) 

From the Bernoulli equation, the pressure in the wave can be written as: 

2( ) * ( *) /
2 zp z w C t gd

t
εε ϕ ϕ ϕ∂ + + + + ∇ ⋅ = 

∂ 
                                  (7) 

Where 2 2( )zV ϕ ϕ ϕ= ∇ ⋅∇ + .  

Applying the gradient operator to Eq.(5) yields: 

( )[( ) 0,z zw z
t

εη ϕ ε ϕ ϕ ϕ ϕ εη
β

∂
∇ + + ∇ + ∇ ⋅∇ ∇ + ∇ = =

∂
            （8） 

Assuming that the wave velocity potential ϕ  can be expressed as the following power series 
formulations with respect to the parameter of β ： 

0 0
,n n

n n
n n

ϕ β ϕ ϕ β ϕ
∞ ∞

= =

= ∇ = ∇∑ ∑                                                    (9) 

Substituting Eq.(9) into Eq.(2) and on the basis of Eq.(3),  one can find readily: 

                      0 0 0 00, ( ) 0, ( ) 0, ( , , )zz zn x y tϕ ϕ ϕ ϕ= = = =                                  (10) 
Thus, 0ϕ  and 0ϕ∇  can be defined as the values of ϕ  and ϕ∇  at an arbitrary water level 

( , )z z x y∗= − , namely: 

For z z∗= − ,                   0 0, ( , , ),
0, 0, 1n n

U x y t
n

ϕ ϕ ϕ ϕ
ϕ ϕ
= ∇ =∇ =
= ∇ = ≥



                                           (11) 

Thus, when 1n ≥ , 

1( )n zz nϕ ϕ −= −∇ ⋅∇                                                                               (12) 

1( )n z n h z hϕ ϕ −= −∇ ⋅∇ = −                                               (13) 
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The formal solutions of Eq.(12) with the boundary condition at the sea bed(Eq.13) can be deduced: 

1 1( )
z

n z n nh
dz zϕ ϕ ϕ− −−

= −∇ ⋅ ∇ +∇ ⋅∇∫                                                         (14) 

and   

          ( )1 1

z z

n n nz h
dz z dz Jϕ ϕ ϕ

∗ − −− −
= −∇ ⋅ ∇ +∇ ⋅∇ =∫ ∫                                         (15) 

          n Jϕ∇ =∇                                                                                              （16) 
where z ε η∇ = ∇ ， z εη= ； 0z∇ = ， ,z z hεη≠ = − . 

Substituting the expressions of nϕ  and its derivatives into Eqs.(4) and (8), one can obtain the 
Boussinesq-type equations to any order of β : 
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Governing Equations  
 Based on Eqs.(14) and (15), the different orders of explicit formulations of wave velocity 

potential can be obtained. According to Eqs.(17) and (18), the governing equations which include all 
nonlinear terms that correspond to the dispersion relation accurate up to ( )2O µ  or ( )O β  can be 

expressed as:  
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where *z  is an arbitrary water level and *z sh= . In this paper, 0.5s =  is chosen. 
In the dimensional form, Eqs.(19) and (20)  are written as(with the symbol * omitted)： 
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NONLINEAR PROPERTIES OF GOVERNING EQUATIONS 
It is assumed that the water depth is constant, namely, ( , ) .h x y const= .The free surface 

elevation, η , and the velocity in the x-direction, u  are expanded with the use of the perturbation 
method as follows, respectively: 

2 3 4 5
1 2 3 4 ( )Oη εη ε η ε η ε η ε= + + + +                                                            （23） 

2 3 4 5
1 2 3 4 ( )u u u u u Oε ε ε ε ε= + + + +                                                             （24） 

Substituting Eqs.(23) and (24) into the one-dimensional forms of Eqs.(21) and (22), one can obtain the 
following expressions at the first order and second order, respectively:  

2 3
1 1 1

1 1( ) 0
3 2t x xxxhu s s h uη + − − + − =                                                              (25a) 

               2 2
1 1 1

1( ) 0
2x t xxtg u s s h uη + − − =                                                                        (25b) 

and  

2 3 2 2
2 2 2 1 1 1 1

1 1 1( ) ( ) ( ) ( )
3 2 2t x xxx x xx xhu s s h u u s s h uη η η+ − − + − = − + −                              (26a) 

        2 2 2 2 2
2 2 2 1 1 1 1 1 1 1 1

1 1( ) ( ) ( ) ( )
2 2x t xxt x x xt x xx xx xg u s s h u u u h u h u u s s h u uη η+ − − = − + − + −      

(26b) 
Consider a wave train consisting of two small amplitude periodic waves with amplitudes 1a  and 

2a , and frequencies 1ω  and 2ω . The water-surface elevation is given by 

1 1 1 1 2 2 2cos( ) cos( )a k x t a k x tη ω ω= − + −                                                      （27) 

where 1k  and 2k   are the respective wave numbers. The individual waves satisfy the first-order of the 
Boussinesq equations [(25a) and (25b)]. Therefore, the horizontal particle velocity can be written as: 

      1 1 1 1 2 2 2cos( ) cos( )u U k x t U k x tω ω= − + −                                                        (28) 
where  

1 1
1

2 2 2
1 1

11 ( )
3

aU
k h s s k h

ω
=

 + − + −  

,   2 2
2

2 2 2
2 2

11 ( )
3

aU
k h s s k h

ω
=

 + − + −  

        （29) 

The second-order wave will consist of a sub harmonic at the difference frequency 21 ωωω −=− , and 

higher harmonics at the sum frequencies 2 1ω ,2 2ω , and 21 ωωω +=+ . It can be expressed as: 

( ) ( )
2 1 2 2 1 2

2 2
1 2 1 1 1 1 2 2 2 2 2 2

( , )cos( )
1 1( , )cos 2 ( , )cos 2
2 2

a a G k x t

a G k x t a G k x t

η ω ω ω

ω ω ω ω ω ω

±
± ±

+ +

= −

+  −  +  −    
         (30) 

Where 21 kkk ±=± , ),( 21 ωω±G  is a quadratic transfer function that relates the amplitude of the 
second-order wave to the first-order amplitudes.  

Differentiating Eq.(26a) with t and differentiating Eq.(26b) with x firstly , and then manipulating 
algebraically yields:   
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Substituting Eq.(30) into Eq.(31), one can obtain: 
[ ] ( )2

1 2 3 1 2 4 5 6 2 1 1 2 7 8
2

2 2 2 2
1 2

(1 ) (1 ) ( ) 1
1 12 (1 )(1 )

15 15

k h k h k h k h
G

D k h k h

ω β β β ω β β β ω ωω β β± ± ±±

±

− − − + − − − − − −
=

+ +
          (32) 

where  
2 2 2

1 1 1 2 2
1 (225 225 525 )

1125
k k k k hβ ± = ± −                                                        （33) 

 4 3 2 2 3 4 4
2 1 1 2 1 2 1 2 2

1 ( 105 135 60 90 30 )
1125

k k k k k k k k hβ ± = − + ± −                         （34) 

  4 2 3 3 2 4 5 6
3 1 2 1 2 1 2 1 2

1 ( 7 9 3 5 )
1125

k k k k k k k k hβ ± = − + ±                                              （35) 

 2 2 2
4 1 1 2 2

1 ( 525 225 225 )
1125

k k k k hβ ± = − ± +                                                        （36) 

 4 3 2 2 3 4 4
5 1 1 2 1 2 1 2 2

1 ( 30 90 60 135 105 )
1125

k k k k k k k k hβ ± = − ± + −                            （37) 

 5 4 2 3 3 2 4 6
6 1 2 1 2 1 2 1 2

1 ( 5 3 9 7 )
1125

k k k k k k k k hβ ± = ± + −                                               （38) 

 2 2 2
7 1 1 2 2

75 (7 13 7 )
1125

k k k k hβ ± = +                                                                     （39) 

  3 2 2 3 4
8 1 2 1 1 2 1 1 2

15 ( )( 2 3 3 2 )
1125

k k k k k k k k hβ ± = + ± ±                                            （40) 

              2 2 2 22 11 ( ) 1 ( )
5 15

D k h ghk k hω±
± ± ± ±
   = + − +      

                                              （41) 

To illustrate the effects of strong nonlinear terms more clearly, we further ignore the βε , 2βε  and 
3βε  terms of Eqs.(19) and (20) and only retain the weakly nonlinear terms , that is, the terms are 

relevant to ε .Thus, Eqs.(19) and (20) are changed into the weakly nonlinear equations. In the similar 
way, the corresponding quadratic transfer functions can be obtained. Assuming 1 2 0.1ω ω ω− = , where 

2/)( 21 ωωω += , the comparisons between the quadratic transfer functions of the Boussinesq 
equations with those of the second-order Laplace equation are shown in Fig.1. In Fig.1, 0L = 

2/2 ωπg . When 0/ 0.5h L = , compared to the quadratic transfer functions of the second-order 
Laplace equation, the set of weakly nonlinear Boussinesq equations underestimates the magnitude of 
the sum frequency and difference frequency by 42.7% and 62.2%, respectively; In contrast, the  set of 
fully nonlinear Boussinesq equations underestimates the magnitude of the sum frequency by 34.9% and 
overestimates the magnitude of the difference frequency by 58.5%. Therefore, it is qualitatively 
illustrated that the precision of the fully nonlinear Boussinesq equations is higher than that of the 
weakly ones. 
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Fig.1 Comparisons between quadratic transfer functions of Boussinesq-type equations and those of second 
order Laplace equation ( : Second order Laplace equation, ：weakly nonlinear Boussinesq-
type equations; ：fully nonlinear Boussinesq-type equations) 

NUMERICAL  MODEL 

Finite Difference Scheme of Governing Equations  
The improved Crank-Nicolson method, which consists of three stages, is performed iteratively, with 

the initial value given by the predictor-corrector method. Firstly, at any given time step n t∆ , the values 
of the variables at ( )1/ 2n t+ ∆  are predicted with the use of the known values at t n t= ∆ . Secondly, 

the predicted values at ( )1/ 2n t+ ∆  are then used to compute the values at ( )1n t+ ∆  in the corrector 

stages. Finally, the computed values at ( )1n t+ ∆  are then used as an initial estimation in an iterative 
scheme, and this is repeated until convergence. The approximations of the first-order time and spatial 

derivatives include the terms of ( ) ( ) ( )2 2 2, ,O t x y ∆ ∆ ∆  , which involve third-order derivatives. Thus, 

it is necessary to make correction for the first-order terms. The method of correction is performing back 
substitution of the truncation terms to obtain the proper calculation results. The correction schemes of 
the first-order derivatives and the difference discretization of governing equations can be referred to 
Zhang(2000) and Zhang et al.(2001). 

 General Boundary Conditions for Open and Fixed Boundaries 
Zhang(2000) derived the general boundary conditions for open and fixed boundaries. Assuming the 

artificial down-wave boundary at Mx x= , on the basis of the theory of linear waves, the wave potential 
at the boundary Mx x=  with arbitrary reflectivity is given by 

[ ]
[ ]

cosh ( )
( , , , ) ( ) ( , , )

coshi r

g k h z
x y z t i x y t

kh
ϕ ϕ ϕ η

ω
 + = + = ±  
  

                                   (42) 

and the free surface elevation is given by 

0( , , ) {exp[ ( ( ) )]

R exp[ ( ( ) )]}
i r x M y

x M y

x y t a i k x x k y t
i k x x k y t

η η η ω ε

ω ε

= + = − + ± +

+ − − + ± +
                        (43) 

where 0a  is the incident wave amplitude; ri
rR k e ε= is the complex reflection coefficient; rk  and rε  

represent the reflection coefficient and phase difference, respectively; xk  and yk  represent the wave 

number in the x-direction and y-direction, respectively. If the down-wave boundary is an open one, rk  

should be set as zero; and if it is a fully reflection one, rk  should be set as unit and rε  should be set as 
zero. 
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Using Eq.(42), one can obtain the following relation: 
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φ τ
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− ∆ −

                                               (44) 

where 
1/22

2

1 2 cos
1 2 cos( )

r r r
x

r x r r

k kA
k k x k

ε
ε

 + +
=  

+ ∆ + + 
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1
sintan

1 cos
r r

r r

k
k

εβ
ε

=
+

；
( )
( )2

sin sin( )
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cos cos( )
x r x r

x r x r

k x k k x
k x k k x

ε
β

ε
− ∆ + ∆ +

=
∆ + ∆ +

.        (46) 

If x∆  is defined, the expressions for the boundary conditions can be deduced from Eq.(44):  
( , , , ) ( , , , )M x M xx y z t A x x y z tφ φ τ= − ∆ −                                            (47) 

2 1xωτ β β± = −                                                                     (48) 
or  

( )2

2

( 1)sin
tan( )

(1 )cos 2 cos( )
r x

x
r x r x r

k k x
k k x k k x

ωτ
ε

− ∆
± =

+ ∆ + ∆ +
                             (49) 

The formulations of yA  and yτ  can be obtained from Eqs.(45) and (49) with x∆  replaced by y∆ , 
respectively. If the waves are outgoing at the down-wave boundary or at the lateral boundaries and the 
wave directions vary severely, the sponge layer should be set near the corresponding boundaries, 
respectively, to minimize the numerical errors generated by the waves reflected from the boundaries 
into the solution for the area of interest. The back ends of the sponge layers are at the corresponding 
boundaries, respectively. According to the numerical tests(Zhang,2000; Zhang et al, 2009), in the case 
of regular waves and irregular waves, the general boundary conditions can effectively reflect the 
influence of different boundaries, and can easily be utilized. 

The Improved Specifying Boundary Conditions 
If the upstream boundary conditions are prescribed only according to the incident wave only, the 

time-dependent numerical models can not effectively simulate the wave field when the physical or 
spurious reflected waves become significant. Zhang et al.(2009) provided a new approach to specifying 
the incident wave boundary conditions combined with a set sponge layer to damp the reflected waves 
towards the incident boundary. The improvement method is very simple, and it is described as follows: 
(1) A sponge layer is set in the neighborhood of the incident boundary. 
(2) The analytical solutions are searched in the region where the sponge layer is set. The steps of 
searching them include: the relevant incident wave factors, such as waveheight, wave period and 
wavelength, should firstly be provided at the incident wave boundary, according to the relevant wave 
theory, for example, Stokes wave or cnoidal wave theory, etc.; the analytical solutions of the dependent 
variables ,which are represented by η  and U


 in this paper, are then obtained in the range of sponge 

layer on the basis of the corresponding wave theory. 
(3) In the spatial range of the sponge layer, the physical or spurious reflected waves, that is, the “error” 
values ( c aη η−  and c aU U−

 
), are obtained from subtracting the analytical solutions( aη and aU


) 

from the calculated values ( cη  and cU


 ), and are then damped with the sponge layer used. 

(4)  In the end, the calculated values, cη  and cU


, at each calculation step, are corrected as follows: 

( ) ( )c* a c a / xη η η η γ= + −                                                                    （50) 

( ) ( )c* a c aU U U U / xγ= + −
   

                                                                （51) 

Where *cη  and *cU


 represent the modified calculated values of the corresponding variables, 

respectively. As for the form of ( )xγ , Zhang et al.(2009) adopted the following formulation: 
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( ) ( )//exp 2 2 ln 0

1

sx xx x
s

s

x x
x

x x

α
γ

− ∆− ∆  − ≤  = 





                                 (52) 

 

The Formulation of Numerical Filter 
 How to filter numerical noise is very important for developing a numerical model because the 

numerical noise can make the model collapse. The numerical noise is often encountered in developing 
the numerical model based on the Boussinesq-type equations, since the governing equations include the 
high order derivative terms. In this paper, the two-dimensional fourth-order model(Shapiro,1970) is 
employed:   

                           ( )* ,* ,
1, 1,( 2 )

2

jji j ii j
ij ijij ij i j i j ij

SF F F F F F F- +

é ù
ê ú= = = + + -
ê úë û

         （53) 

Where S  is the smoothing factor, ,i jF  represents the original values at point ( , )i j  and *
,i jF  

represents the new values after numerical filtering at the same point. The numerical filtering response 
function correspondence to Eq.(53) is:  

                        2 2( , ) 1 2 sin / 2 1 2 sin / 2x yR k h S k x S k yé ùé ù= - D - Dê úê úë ûë û                     (54) 

Based on Eqs.(53) and (54), with the use of maple software, The 81-point two-dimensional formulation 
in the interior of calculation domain is as follows:  

, , 1 , 1 1, 1,

, 2 , 2 2, 2, 1, 1 1, 1 1, 1 1, 1

2, 1 2, 1 1, 2 1, 2 1, 2 1, 2 2, 1

*
,

34596 10416( )

5208( ) 3136( )

1568(

1
65536

i j i j i j i j i j

i j i j i j i j i j i j i j i j

i j i j i j i j i j i j i j

i j

F F F F F

F F F F F F F F

F F F F F F F

F

− + − +

− + − + − − − + + − + +

− − − + − − − + + − + + + −

+ + + +

− + + + + + + +

− + + + + + +

=

2, 1

, 3 , 3 3, 3, 2, 2 2, 2 2, 2 2, 2

3, 1 3, 1 1, 3 1, 3 1, 3 1, 3 3, 1 3, 1

3, 2 3, 2 2, 3 2,

)

1488( ) 784( )

448( )

224(

i j

i j i j i j i j i j i j i j i j

i j i j i j i j i j i j i j i j

i j i j i j i j

F

F F F F F F F F

F F F F F F F F

F F F F

+ +

− + − + − − − + + − + +

− − − + − − − + + − + + + − + +

− − − + − − −

+

+ + + + + + + +

+ + + + + + + +

− + + + 3 2, 3 2, 3 3, 2 3, 2

, 4 , 4 4, 4, 3, 3 3, 3 3, 3 3, 3

4, 1 4, 1 1, 4 1, 4 1, 4 1, 4 4, 1 4, 1

4, 2

)

186( ) 64( )

56( )

28(

i j i j i j i j

i j i j i j i j i j i j i j i j

i j i j i j i j i j i j i j i j

i j

F F F F

F F F F F F F F

F F F F F F F F

F

+ + − + + + − + +

− + − + − − − + + − + +

− − − + − − − + + − + + + − + +

− −

+ + + +

− + + + + + + +

− + + + + + + +

+ 4, 2 2, 4 2, 4 2, 4 2, 4 4, 2 4, 2

4, 3 4, 3 3, 4 3, 4 3, 4 3, 4 4, 3 4, 3

4, 4 4, 4 4, 4 4, 4

)

8( )

( )

i j i j i j i j i j i j i j

i j i j i j i j i j i j i j i j

i j i j i j i j

F F F F F F F

F F F F F F F F

F F F F

− + − − − + + − + + + − + +

− − − + − − − + + − + + + − + +

− − − + + − + +

 
 
 











 + + + + + + +

− + + + + + + +
+ + + + 

















(55) 

TEST CASES 
To study the effects of nonlinear terms quantitatively, the two versions of the numerical model 

are employed to simulate the wave propagation. That is, one version is fully nonlinear, its governing 
equations include all nonlinear terms proportional to powers of ε ; and the other version is weakly 
nonlinear, its governing equations only include the nonlinear terms proportional to the first order of ε . 
The fully nonlinear version is referred to below as the FN model, and the weakly nonlinear version is 
referred to below as the WN model. The experiments of Ito & Tanimoto (1972) and Berkhoff et 
al.(1982) are widely used to testify the relevant numerical model. Thus, they are also used in this paper. 
The dissipative terms are omitted in this paper because the calculation domain is not large(Zhang et 
al.2005). 

 Wave propagation Over a Submerged Shoal with Concentric Contours 
Ito & Tanimoto(1972) performed an experiment of wave propagation on a submerged shoal with 

concentric contours. The experimental layout is shown in Fig.2. The incident wave period T  and wave 
height 0H are 6.3s  and 1.0m , respectively. The lateral boundaries are the fully reflective walls and 
the down-wave boundary is perfect outflow. The grid steps x∆  and y∆  are both chosen as 
4.03763m , the time step t∆ is chosen as / 32T .The filter is applied every 100 time steps. 
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It is shown in Fig.3 that the modeled results along two sections are compared to experiment data, 

where the solid line, dashed line and symbols represent the results of FN model, those of WN model 
and experimental data, respectively. It is found that the results of both models correspond to the 
experimental data. The quantitative mismatch can be measured by the index proposed by Wilmott 
(1981) as follows: 

                              
 

 

 

 

 

 

 

  

 

 

  

 

  

 
Fig.2 Experimental layout of Ito & Tanimoto (1972)  

 
 

 

 

 

 

 

 

 

Fig. 3 Comparisons between the modeled results with experimental data 
(▲： Experimental data, ：WN model;           ：FN model) 
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where ( )x j  are experimental data, x  is the mean value of ( )x j , ( )y j  are the modeled 

results. 0d = means a completely mismatch and 1d =  indicates a perfect agreement. 
 
 
 
The calculated index d can be found in Table 1. Although the differences between the WN 

model and FN model can’t be obviously reflected in Fig.3, it is indicated in Table 1 that the precisions 
of FN model are indeed higher than those of WN model. 

 
 

Table 1. The calculated index d with experimental data as ( )x j  and modeled results as ( )y j  

 Section (a) Section (b) 

WN model results as ( )y j  0.944 0.981 

FN model results as ( )y j  0.946 0.983 

 

Wave Propagation on a Plane Beach with an Elliptic Shoal 
 Berkhoff et al.(1982) conducted an experiment to observe the wave transformation due to 

reflection, refraction and diffraction. The experimental layout and 8 sections for collecting wave data 
are shown in Fig.4. The incident wave period and wave height are1.0s and 0.046m ，respectively. The 
grid steps x∆  and y∆  are chosen as 0.125m  and 0.25m , respectively. The time step t∆ is chosen as 

/100T .The filter is applied every 50 time steps. Because the water depths near the down-wave 
boundary are very shallow, the calculation domain is chosen as 27 20m m× . 

 
 

 

 

 

 

 

 

 
 
 

 

 

 
 

Fig.4 Experimental layout of Berkhoff et al.(1982) 
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Fig. 5 Comparison of numerical results and experimental data (▲：Experimental data, ：WN model 
results;          ：FN model results) 
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Table 2. The calculated index d with the experimental data as and modeled results as ( )y j . 

 1# 2# 3# 4# 5# 6# 7# 8# 

FN model results as ( )y j  0.736 0.948 0.977 0.974 0.941 0.911 0.851 0.582 

WN model results as ( )y j  0.620 0.890 0.975 0.946 0.939 0.808 0.751 0.549 

 
The comparisons between the modeled results with experimental data are shown in Fig.5, 

where the solid line, dashed line and symbols represent the results of FN model, those of WN model 
and experimental data, respectively. It can be seen that the modeled results from the FN model are 
obviously better than those of the WN model. The quantitative comparisons between different models 
with experimental data are shown in Table 2. It clearly indicates that the accuracy of the FN model is 
higher than that of the WN model. The average value of index d from the FN model is 0.865. In 
contrast, it is 0.810 based on the WN model. Thus, if the governing equations include the higher order 
nonlinear terms, the agreement between the corresponding numerical model and the experiment can be 
improved. 

CONCLUSIONS 
A set of high-order fully nonlinear Boussinesq-type equations is derived from the Laplace 

equation and the nonlinear boundary conditions. The derived equations include the dissipation terms 
and fully satisfy the sea bed boundary condition. The equations with the linear dispersion accurate up to 
[2,2] padé approximation is qualitatively and quantitatively studied in details. The difference between 
the fully nonlinear version of the equations and the weakly version is found by analyzing their second-
order transfer function. A numerical model for wave propagation is developed with the use of iterative 
Crank-Nicolson scheme, and the two-dimensional fourth-order filter formula is also derived in this 
paper. With two test cases numerically simulated, the modeled results of the fully nonlinear version of 
the numerical model are compared to those of the weakly nonlinear version. It is found that the high-
order nonlinear terms in the governing equations can indeed improve the precision of the numerical 
model. 
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