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SHOALING OF NONLINEAR INTERNAL WAVES ON A UNIFORMLY SLOPING BEACH 

Kei Yamashita1, Taro Kakinuma2 and Keisuke Nakayama3 

The internal waves in the two-layer systems have been numerically simulated by solving the set of nonlinear 

equations in consideration of both strong nonlinearity and strong dispersion of waves. After the comparison between 

the numerical results and the BO solitons, as well as the experimental data, the internal waves propagating over the 

uniformly sloping beach are simulated including the cases of the mild and long slopes. The internal waves show 

remarkable shoaling after the interface touches the critical level. In the lower layer, the horizontal velocity becomes 

larger than the local linear celerity of internal waves in shallow water just before the crest peak and the position is 

defined as the wave-breaking point when the ratio of nonlinear parameter to beach slope is large. The ratio of initial 

wave height to wave-breaking depth becomes larger as the slope is milder and the wave nonlinearity is stronger. The 

wave height does not increase so much before the wave breaking on the mildest slope. 

Keywords: nonlinear internal wave; two-layer system; variational principle; shoaling; wave-breaking point 

INTRODUCTION 

When density stratification is well developed in a nearshore zone, internal waves propagate 

affecting the water environment. Especially in shallow water regions, not only internal long-period 

waves, e.g. internal seiches and tides, but also internal short-period waves are observed with wave 

nonlinearity and dispersion. Internal waves propagating over a slope have been studied through 

hydraulic experiments (e.g. Helfrich, 1992), as well as various theories including the Benjamin-Ono 

(BO) equation considering both weak nonlinearity and weak dispersion of waves. 

In the present study, a set of nonlinear internal wave equations derived on the basis of the 

variational principle without any assumptions on wave nonlinearity and dispersion (Kakinuma, 2001) is 

numerically solved in the vertical two-dimension. In the derivation process of equations, the velocity 

potential is expanded into a power series of vertical position, after which the velocity potential is 

approximated using only several terms of the power series in numerical computation. It has been 

confirmed that the numerical model shows good results in comparison with experimental data over a 

flat seabed (Yamashita et al., 2011) when the number of terms for the velocity potential is sufficient. 

First, the numerical model of internal waves is verified: in deep-water cases, computational results 

of interface profiles up to each order on the vertical length scale of motion are compared with the 

theoretical solutions of the BO equation; on the other hand, in shallow-water cases, numerical 

calculation results obtained through the present model are compared with those through the fully 

nonlinear model for long internal waves (Choi and Camassa, 1999), as well as the existing experimental 

data (Horn et al., 2000). 

Second, physical variables are evaluated as internal waves are approaching to wave-breaking points 

to investigate characteristics of nonlinear internal waves propagating on uniformly sloping beaches of 

mild and long slopes, which are difficult to be represented in a laboratory tank. 

NORMALIZED EQUATIONS FOR NONLINEAR INTERNAL WAVES 

In two-layer density stratification of inviscid and incompressible fluids between two fixed 

horizontal plates, the still-water thickness of the i-layer is denoted by hi(x). None of the fluids mix even 

in motion and the density ρi (ρ1 < ρ2) is spatially uniform and temporally constant in each layer. Surface 

tension and capillary action are neglected. 

Fluid motion is assumed to be irrotational, such that the velocity potential φi is expanded into a 

series in terms of a given set of vertically distributed functions Zi,α multiplied by their weightings fi,α as 
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where the sum rule of product is adopted for subscript α. 
Nonlinear internal wave eqations based on the variational principle are as follows (Yamashita et al., 

2011): 
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where ( )yx ∂∂∂∂=∇ , , i.e., a partial differential operator in the horizontal plane; η (x,t), b(x), and g are 

interface displacement, seabed position, and gravitational acceleration, respectively. 

The physical variables are normalized as 
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where h, λ, and a are characteristic water depth, wavelength, and wave height, respectively. These 
equations are substituted into Eqs. (2), (3), and (4), resulting in 
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NUMERICAL CALCULATION METHOD 

Two-layer problems are solved in vertically two-dimensional cases. Equations (6), (7), and (8) are 

rewritten to finite difference equations, after which the time development is carried out by applying 

implicit schemes similar to that of Nakayama and Kakinuma (2010). 

COMPARISON BETWEEN NUMERICAL RESULTS AND THEORETICAL SOLUTIONS 

Deep-Water Cases 

We compare computational results of interface profiles with theoretical solutions through the BO 

equation. In the derivation process of the BO equation, the depth of one layer is assumed to be 

inifinitely deep. In this study, it is assumed that the lower layer thickness is much larger than that of the 

upper layer as shown in Fig. 1 and a/h1 = O(h1/λ)
2
 << 1. The BO equation (Benjamin, 1966; Ono, 

1975) is 
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Figure 1. Two-layer system between two fixed horizontal plates. 

 

 

 

 
Figure 2. Initial interface profiles (The initial wave height is equal to 2a.). 
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where H(∂
2η/∂x2) is Hilbert transform of ∂

2η/∂x2. The theoretical solution of a solitary wave obtained 
by the BO equation, i.e., a BO soliton, is 
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In numerical computation, the initial interface profiles are shown in Fig. 2, where the interface 

displacement η (x,0) = 2aλBO
2
/(x

2 + λBO
2
) − h1; λBO is the characteristic wavelength of BO soliton; the 

initial total depth h, thickness ratio h2/h1, and density ratio ρ2/ρ1 are 1.0 m, 99.0, and 1.02, respectively. 

There is a vertical wall of perfect reflection at x = 0 m. The grid width ∆x and the time-step interval ∆t 
are equal to 0.02 m and 0.005 s, respectively. 

Time variation of the ratio of wave height to upper layer thickness, ε'1, and the ratio of upper layer 
thickness to wavelength, σ'1, are shown in Figs. 3(a) and 3(b), where the initial wave height is equal to –
0.05h1, –0.1h1, and –0.2h1; C0 is celerity of linear internal wave in shallow water; the ratios ε'1 and σ'1 
are defined by Koop and Butler (1981) as 
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where ηtrough and xtrough are interface displacement and horizontal position of the first trough of internal 

wave, respectively. 

 If a = –0.05h1 and N = 3, 4, or 5, then ε'1 and σ'1 have become steady when tC0/h1 > 2,000; on the 

other hand, if a = –0.2h1 and N = 4 or 5, then ε'1 and σ'1 have become relatively steady when tC0/h1 > 
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Figure 3. Time variation of the ratio of wave height to upper layer thickness (a) and the ratio of upper layer 

thickness to wavelength (b), where C0 is the celerity of linear internal wave in shallow water. 

 

3,000. In the verification of the model, the stationary waves should be compared with BO solitons. 

In Fig. 4, numerical results of interface profiles at tC0/h1 = 3,320 are compared with those of the 

corresponding BO solitons, where a = –0.05h1 and a0 = ηtrough+h1. When N < 4, the interface gradient is 

steeper than that of the BO soliton. On the other hand, when N = 4 or 5, the interface profile obtained 

through the present model is in harmony with that of the BO soliton. When N = 5, ε'1, σ'1, and the ratio 
of lower layer thickness to wavelength, σ'2, are equal to 0.045, 0.01, and 0.99, respectively, at tC0/h1 = 

3,320. The result through the linearized present model (linear model) is remarkably disintegrated due to 

the wave dispersion. 

Figures 5(a) and 5(b) show vertical distributions of horizontal velocity in the upper layer above the 

trough of internal wave, u1,trough, and that in the lower layer below the trough, u2,trough, respectively, 

where a = –0.05h1 and tC0/h1 = 3,320. The distributions of u1,trough are nearly uniform since the 

wavelength is much larger than the upper layer thickness and the wave nonlinearity is not so strong. 

When N > 2, the distributions of u2,trough show large curvature, which means that the internal waves 

propagate in rather deep water. 

Calculation results of interface profiles at tC0/h1 = 3,320 are compared with those of the 

corresponding BO solitons in Fig. 6, where a = –0.2h1. When N = 5, ε'1, σ'1, and σ'2 are equal to 0.12, 
0.03, and 2.97, respectively, at tC0/h1 = 3,320. In this case, where the wave nonlinerity is stronger (a/h1 

= 0.2), the wave profiles obtained through the present model are similar to those of the BO solitons 
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Figure 4. Interface profiles at tC0/h1 = 3,320, where h2/h1 = 99.0 and a = –0.05h1. 

 

 

 

 
Figure 5. Vertical distributions of horizontal velocity in the upper layer above the trough of internal wave, 

u1,trough, and that in the lower layer below the trough of internal wave, u2,trough. 

 

when N > 3. However, the interface gradient through the present model is milder than that of the BO 

soliton as shown in Fig. 7, which means that the present model considers wave nonlinearity better than 

the BO equation since the interface gradient of strongly nonlinear wave is milder than that through the 

theories for weakly nonlinear waves as the KdV theory (Nakayama and Kakinuma, 2010). 

Figure 8 shows the numerical calculation results of wave profiles at tC0/h1 = 3,320 in comparison 

with those of the corresponding BO solitons in a deeper case, where h = 10.0 m, h2/h1 = 999.0, and the 

density ratio ρ2/ρ1 is 1.02; the initial interface displacement η (x,0) = 2aλBO
2
/(x

2 + λBO
2
) − h1 and a = 

– 0.05h1; the grid width ∆x and the time-step interval ∆t are equal to 0.02 m and 0.005 s, respectively. 
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Figure 6. Interface profiles at tC0/h1 = 3,320 where h2/h1 = 99.0 and a = –0.2h1. 

 

 

 

 

 
Figure 7. Interface profiles at tC0/h1 = 3,320, where h2/h1 = 99.0 and a = –0.2h1. 

 

 

 

 

 
Figure 8. Interface profiles at tC0/h1 = 3,320, where h2/h1 = 999.0 and a = –0.05h1. 
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(a) Dimensions of the laboratory tank.               (b) Initial condition, where the interface is inclined 

linearly with the angle θθθθ in the horizontal tank. 

Figure 9. Schematic of tanks. 

 

 

 

 
Figure 10. Time variation of interface displacement measured at Position C in the hydraulic experiment and 

those through the present model, where the number of terms for expanded velocity potential, N, is equal to 

three, and the fully nonlinear model by Choi and Camassa (1999). 

 

The profiles of BO solitons are much different from the calculation results, where larger number of 

terms for the velocity potential are required to represent the wave dispersion more accurately. 

Shallow-Water Case 

Horn et al. (2000) performed hydraulic experiments using a tank, where the length L, depth D, and 

width W were 6.0, 0.29, and 0.3 m, respectively, as shown in Fig. 9(a). Three ultra-sonic wave gauges 

were set at the Positions A, B, and C. The tank was filled with a two-layer stratification, where h1/D = 

0.8. At the beginning of experiments, the tilted tank, where the tilt angle was θ around the axis of 
rotation, was returned to a horizontal position quickly, after which internal waves traveled in the two-

layer system between two fixed horizontal plates. 

In the initial condition of numerical computation, the tank is horizontal and the interface is inclined 

linearly as shown in Fig. 9(b); the initial velocity potential is assumed to be zero through the 

computational domain. The grid width ∆x and the time-step interval ∆t are equal to 0.06 m and 0.02 s, 

respectively. 

The interface displacement at Position C in Fig. 9(a) measured in the experiment is shown in Fig. 

10(a), while the corresponding calculation result through the present model, where N = 3, and the fully 

nonlinear model for long internal waves by Choi and Camassa (1999) (the CC model), where O(ε1) = 1 
and O(σ1)

4
 << 1, are shown in Fig. 10(b), in the case where the density ratio ρ2/ρ1 and tilt angle θ are 

1.019 and 0.4617°, respectively. The calculation result through the present model represents the 

accurate wave periods, although the wave height through the numerical models is too large because the 

numerical computation does not consider viscosity of the fluids and friction at the interface. When t > 

240 s, the number of crests through both the experiment and the present model is equal to six, whereas 

that through the CC model is five. 

The interface profiles at t = 280 s obtained using the present model, where N = 3 or 4, the CC 

model, and a Boussinesq-type model, where O(ε1) = O(σ1)
2
 << 1, are shown in Fig. 11. The wave 

height through the present and the CC models is larger than that trough the Boussinesq-type weakly 

nonlinear model. On the other hand, the wavelength through the present model is shorter than that 

through the CC model and the Boussinesq-type weak dispersion model. 



 COASTAL ENGINEERING 2012 

 

8 

 

 
Figure 11. Interface profiles through the present model, where N = 3 and 4, the fully nonlinear model by Choi 

and Camassa (1999), and the Boussinesq-type model at t = 280 s. 

 

 

 
Case A: ρ2/ρ1, = 1.02, h1/h, = 0.2, a0/h1 = 0.2, and s = 0.03 

 

 

 

 
Figure 12. Initial interface profile over a uniformly sloping beach. 

 

NUMERICAL SIMULATION OF INTERNAL WAVES OVER A UNIFORMLY SLOPING BEACH 

Definition of Wave-Breaking Point 

Helfrich (1992) performed hydraulic experiments on both breaking and run-up of internal solitary 

waves on a uniform slope using a water basin, where the beach slope s was larger than 0.03. In actual 

cases, the beach slope is, for example, equal to 0.01 in a lake or 0.001 on the sea shore. In the present 

paper, numerical simulation of internal solitary waves propagating on a uniformly sloping beach is 

conducted for the cases shown in Tab. 1 including cases of mild and long slopes, which are difficult to 

be represented in a laboratory experiment. The calculation domain is shown in Fig. 12. 

The case where ρ2/ρ1, h1/h, a0/h1, and s are 1.02, 0.2, 0.2, and 0.03, respectively, is reffered to as 

Case A. The incident waves are the third order theoretical solitary waves. The conditions where the 

density ratio ρ2/ρ1 = 1.024 correspond to the experimental conditions by Helfrich (1992). The lateral 

boundary condition is the perfect reflection at a vertical wall. The numerical calculation stops when the 

interface touches the bottom. The number of terms in expanded velocity potential, N, is equal to three. 

The grid width ∆x and the time-step interval ∆t are equal to 0.05 m and 0.005 s, respectively. 

Numerical results of interface profiles in Case A is shown in Fig. 13(a), where the dashed line 

shows the critical level, i.e., the lowest position for an interface of internal solitary wave to be able to 

appear. The critical level zc is determined by the KdV theory as 
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Figure 13. Time variation of interface profiles, where the dashed line shows the critical level obtained 

through the KdV theory, and the time variation of the ratio of wave height H to upper layer thickness h1 (ρρρρ2/ρρρρ1 

= 1.02, h1/h = 0.2, a0/h1 = 0.2, s = 0.03). 

 
 

 
 

Figure 14. Interface profile, horizontal velocity of water particles in the vicinity of the interface in the i-layer, 

ui, and vertical acceleration of water particles in the vicinity of the interface in the i-layer, Dwi/Dt, where Ci is 

the local celerity of linear internal wave in shallow water (ρρρρ2/ρρρρ1 = 1.02, h1/h = 0.2, a0/h1 = 0.2, s = 0.03). 

 

 ( ).1 12c ρρ+= bz
 (13) 

According to Fig. 13(a), when the interfaces reach the critical level, the internal waves propagating on 

the slope begin inclined backward, after which the internal waves show remarkable disintegration. 

Time variation of the ratio of wave height to upper layer thickness in Case A is shown in Fig. 13(b), 

where the wave height H is the vertical distance between the interface levels at the first trough and the 

first crest. The ratio increases gradually to have a peak at s123* ≈= λghtt , after which it decreases. 

The physical variables at t
*
 = 123.5 s, including the interface profile, the horizontal velocities of 

water particles in the vicinity of the interface in the i-layer, ui, and the vertical acceleration of water 

particles in the vicinity of the interface in the i-layer, Dwi/Dt, are shown in Fig. 14, where Ci and ε are 
local celerity of linear internal wave in shallow water and (ρ2 – ρ1)/ρ2, respectively. According to the 

figure, u2 exceeds Ci just before the crest peak, where the position can be determined as the wave-

breaking point. If Dw2/Dt becomes larger than εg before u2 exceeds Ci, where the position where 

Dw2/Dt becomes larger than εg is defined as the wave-breaking point. On the other hand, in the cases 
where γ/s < 3.5, the interface touches the bottom before the internal waves break; these cases are plotted 

and indicated as ‘No breaking’ in Fig. 15, where the internal-wave-breaking points are summarized 

using a nonlinear parameter proposed by Aghsaee et al. (2010): 

 
.5.1 2121 hhhha −=γ  (14) 

The amplitude of γ indicates the strength of the wave nonlinearity. According to Fig. 15, internal 
waves break before the interface touches the bottom when γ/s > 3.5, while internal waves break after the 
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Figure 15. Conditions of internal-wave breaking. 

 

interface touches the bottom when γ/s < 3.5. 

Physical Variables near a Wave-Breaking Point 

Figure 16 shows the relationship between the raio of initial wave height a0 to wave-breaking depth 

in the lower layer, h2,BP, and the ratio of nonlinear parameter γ to slope s, where the suffix BP indicates 
the variable at a wave-breaking point. The calculation results are compared with the experimental data 

by Helfrich (1992) in Fig. 16, according to which the ratio a0/h2,BP is underestimated using the present 

model, which means that the wave-breaking depth in the lower layer, h2,BP, is overestimated. In the 

computation the friction is not considered at the interface and the incident waves are assumed to be the 

third order theoretical solitary waves, which may leads to such difference between the calculated and 

expermental results. The tendency of the data is, however, similar, where the larger the ratio γ/s is, the 
larger the ratio a0/h2,BP becomes. 

The relationship between γ/s and a0/h2,BP is shown in Fig. 17, where the numerical results 

compensate the experimental data obtained by Helfirich (1992) in consideration of internal waves over 

the milder and longer slopes. Accoding to the figure, a0/h2,BP becomes larger as the slope is smaller and 

the wave nonlinearity is stronger. 

The relation between the slope and the ratio of wave height HBP to wave-breaking depth h2,BP is 

shown in Fig. 18, where HBP is the vertical distance of interface levels between at the first trough and 

the first crest, at the wave-breaking point. The value HBP/h2,BP becomes larger, i.e., 0.9 – 1.8, when the 

slope is milder, i.e., s = 0.03 – 0.01. 

Figure 19 shows the amplification factor of the wave height at the wave-breaking point, HBP/a0. On 

the steeper slopes, internal waves show wave breaking before the wave height is amplified. On the 

mildest slope, the wave height does not increase so much in the wave shoaling because of the wave 

dispersion through the longer distance travel, where the energy of internal waves has been provided to 

the waves in the following wave train as shown in Fig. 20, where ρ2/ρ1, h1/h, a0/h1, and s are 1.02, 0.2, 

0.3, and 0.01, respectively. On the other hand, the wave height is amplified remarkably when s is equal 

to 0.02 to 0.04. 

The minimum interface gradient of the rear face of the first trough at the wave-breaking point, 

∂ηBP/∂x|min, is shown in Fig. 21. On the mildest slope where s = 0.01, the rear face of the first trough at 

the wave-breaking point is milder than that of internal waves propagating on the steeper slopes. 

CONCLUSIONS 

The internal waves in the two-layer systems were numerically simulated by solving the set of 

nonlinear equations in consideration of both strong nonlinearity and strong dispersion of waves. After 

the verification of the numerical results in comparison with the BO solitons, as well as the existing 

experimental data, the internal waves propagating over the uniformly sloping beach were simulated 

including the cases of the mild and long slopes, which were difficult to be represented in a laboratory 
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Figure 16. Location of wave-braking points through the present model, where N = 3, and the experiments by 

Helfrich (1992). 

 

 

 
 

Figure 17. Location of wave-braking points through the present model, where N = 3, and the experiments by 

Helfrich (1992). 

 

 

tank. The internal waves showed remarkable shoaling after the interface touched the critical level. In the 

lower layer, the horizontal velocity became larger than the local celerity of linear internal waves in 

shallow water just before the crest peak and the position was defined as the wave-breaking point when 

the ratio of nonlinear parameter to beach slope, γ/s, was larger than 3.5. The ratio of initial wave height 
to wave-breaking depth, a0/h2,BP, became larger as the slope was milder and the wave nonlinearity was 

stronger. On the mildest slope where the slope was equal to 0.01 the wave height did not increase so 

much before wave breaking because of the wave dispersion through the longer distance travel, where 

the energy of internal waves had been provided to the waves in the following wave train. 
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Figure 18. Relation between the beach slope s and the ratio of wave height at the wave-breaking point, HBP, 

to wave-breaking depth h2,BP. 

 

 

 
 

Figure 19. Relation between the beach slope s and the amplification factor of wave height, HBP/a0. 

 

 

 
 

Figure 20. Interface profile at t
*
 = 370.3 s (ρρρρ2/ρρρρ1 = 1.02, h1/h = 0.2, a0/h1 = 0.3, s = 0.01). 
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Figure 21. Relation between the beach slope s and the minimum interface gradient of the rear face of the 

first trough at the wave-breaking point. 
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