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REAL-TIME ASSESSMENT OF WAVE AND SURGE RISK DUE TO LANDFALLING 
HURRICANES 

Alexandros A. Taflanidis1, Andrew B. Kennedy1, Joannes J. Westerink1, Jane M. Smith2, 
Tracy Kijewski-Correa1 and Kwok Fai Cheung3 

In this work, a probabilistic framework is presented for real-time assessment of wave and surge risk for hurricanes 
approaching landfall. This framework has two fundamental components. The first is the development of a surrogate 
model for the rapid evaluation of hurricane waves, water levels, and runup based on a small number of parameters 
describing each hurricane: hurricane landfall location and heading, central pressure, forward speed, and radius of 
maximum winds. This surrogate model is developed using a response surface methodology fed by information from 
hundreds of pre-computed, high-fidelity model runs. For a specific set of hurricane parameters (i.e., a specific 
landfalling hurricane), the surrogate model is able to evaluate the maximum wave height, water level, and runup 
during the storm at a cost that is more than seven orders of magnitude less than the high fidelity models and thus meet 
time constraints imposed by emergency managers and decision makers. The second component to this framework is a 
description of the uncertainty in the parameters used to characterize the hurricane, through appropriate probability 
models, which then leads to quantification of hurricane-risk in terms of a probabilistic integral. This integral is then 
efficiently computed using the already established surrogate model by analyzing thousands of different scenarios 
(based on the aforementioned probabilistic description). Finally, by leveraging the computational simplicity and 
efficiency of the surrogate model, a simple stand-alone PC-based risk assessment tool is developed that allows non-
expert end users to take advantage of the full potential of the framework. An illustrative example is presented that 
considers applications of these tools for hurricane risk estimation for Oahu. The development of cyber-infrastructure 
at the University of Notre Dame to further support these initiatives is also discussed.  

Keywords: hurricane risk; response surface approximations; joint probability method; coastal hazard; cyber-
infrastructure  

INTRODUCTION  
Hurricane risk assessment has received increased attention in the past decade, partly in response to 

the destructive 2004, 2005 and 2008 hurricane seasons (Dietrich et al. 2010; Kennedy et al. 2011). 
Conventional approaches to this assessment are based on parametric or non-parametric analysis of data 
from historical storms (Borgman et al. 1992) or on simulation of hurricane design events. A different 
methodology (Myers 1975), frequently referenced as the Joint Probability (JPM) Method, relies on a 
simplified description of hurricane scenarios through a small number of model parameters (Niedoroda 
et al. 2008; Resio et al. 2009). Description of the uncertainty in these parameters, through appropriate 
probability models, leads to a probabilistic characterization of the hurricane risk. This risk is ultimately 
expressed as a probabilistic integral over the uncertain parameter space, and its estimation requires 
numerical evaluation of the hurricane inundation for a large number of scenarios resulting from the 
adopted probabilistic description of the model parameters (Resio et al. 2009; Taflanidis et al. 2012).   

One of the important recent advances in this field has been the development of high-fidelity 
numerical simulation models for reliable and accurate prediction of surge responses for a specific 
hurricane event (Resio and Westerink 2008). These models permit a detailed representation of the 
hydrodynamic processes, albeit at the cost of greatly increased computational effort. This increases 
significantly the computational cost for estimating hurricane risk, which requires evaluation of the 
response for a large number of hurricane scenarios. To alleviate this problem, a low-cost dimensional 
surge response function was proposed Irish, et al., (2009), but only addressed the variation with respect 
to hurricane storm size, intensity, and track, was restricted to hurricane surge only and limited to 
specific locations of interest on the Texas coast. Udoh and Irish (2011) presented preliminary 
discussions for extending these surge response functions to address additional hurricane model 
parameters, the forward speed and heading, whereas Song, et al., (2012) recently investigated the 
influence of regional changes in bathymetry on the surge response functions. Das, et al., (2010) 
developed a methodology for selecting the most appropriate storm within some given database. 
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Extending these efforts, this paper offers a versatile theoretical and computational framework for 
evaluation of hurricane wave and surge risk with particular emphasis on real-time, automated 
estimation during landfalling hurricanes, and implementation for the Hawaiian Island of Oahu. The 
significant advancements offered are that (i) risk for a given hurricane scenario may be calculated 
rapidly for hundreds of thousands of locations in a coastal region of interest, and for any modeled 
quantity representing hurricane impact (e.g. surge, wave height, runup), (ii) all parameters used to 
describe the hurricane characteristics may be varied over their appropriate ranges, and (iii) the 
framework may be used to develop automated risk assessment tools that can be ultimately used by end-
users without high technical expertise, thus crossing over barriers for adoption of the advocated 
technologies. This versatile framework has few constraints in its applicability. Its foundation is the 
development of a computationally-efficient surrogate model for approximation of the impact for any 
hurricane scenario.  Simply put, the input hurricane parameters are the variables that drive a smart 
interpolation (based on pre-computed high-fidelity numerical simulations) of a hurricane response 
surface. A moving least squares response surface approximation is adopted for the surrogate model. 
This selection provides the intended versatility of the framework, as it does not rely on any 
assumptions for the variability of the hurricane wave/surge response with respect to the hurricane 
model parameters and is efficiently implemented for any quantity representing the hurricane impact. 
The proposed methodology ultimately facilitates rapid real time risk assessment, but it establishes this 
at a considerable upfront computational cost, namely to perform high-fidelity simulations to create the 
surrogate model. This model can be then coupled with forecasts from the National Hurricane Center to 
facilitate real-time risk estimation. During a landfalling hurricane, the National Hurricane Center 
forecasts the most probable hurricane track and also provides standard climatological errors for track, 
strength, etc., associated with this prediction. This forecast can be used to define a probabilistic integral 
quantifying hurricane risk which can be estimated real-time at a small computational cost using the 
surrogate model. Leveraging this computationally efficient framework, we also establish an assessment 
tool that allows non-expert end users to take advantage of the full potential of this methodology to 
evaluate risks. Figure 1 presents an overview of the proposed framework. 

 

 
 

Figure 1: Schematic for development of framework for real-time hurricane risk assessment 

PROBABILISTIC FRAMEWORK 

Hurricane modeling 
Each hurricane/storm event is approximated by a small number of model parameters, 

corresponding to its characteristics at landfall such as (i) landfall location xo, (ii) track heading θ, (iii) 
central pressure cp, (iv) forward speed vf, (v) radius of maximum winds Rm, and (vi) tide level et. 
Typically a constant tide level is assumed (Resio et al. 2009) leading to the following definition of the 
model parameter vector, x, describing each hurricane scenario 
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 [ ]T
o p f mx c v Rx  (1) 

where []T
 denotes a matrix transpose. Note that the discussions in this paper can be directly 

extended to include the tide level (or any other appropriate hurricane characteristic) as a model 
parameter. The implicit assumption is, though, that x is low dimensional (includes less than 8-10 
parameters). This is necessary for facilitating an efficient description through a surrogate model, 
without requiring an overly large database to adequately describe the variability with respect to all the 
model parameters. The variability of the hurricane track and characteristics prior to landfall is also 
important. Directly incorporating, though, this variability in the hurricane description would increase 
significantly the number of model parameters and so it is avoided here. Instead this variability is 
approximately addressed by appropriate selection of the hurricane track history prior to landfall, so that 
important anticipated variations, based on historical data, are efficiently described (Resio et al. 2009).  

To represent hurricane impact in the coastal region of interest, and ultimately to quantify risk, 
several response quantities may be examined simultaneously in this framework.  Examples of such 
quantities are (i) the still water level (SWL), i.e. storm surge ζ, defined as the average sea level over a 
several minute period, (ii) the wave runup level (WRL), defined as the sea level including runup of 
wind waves on the shore, (iii) the significant wave height (Hs) (possibly along with the corresponding 
peak period Tp), or (iv) the time that normally dry locations are inundated. In this study we will focus 
on the first three. Once the response parameters of interest have been determined, we let z denote the 
vector of response quantities (i.e., z  is the response as a function of the spatial variables x and y).  This 
vector will be referenced herein as the response vector and will be used to quantify hurricane risk. 
Each component of z pertains to a specific response variable [any of the (i)-(iv) described above] for a 
specific location. The augmentation of all these responses for all different locations in our region 
ultimately provides the nz-dimensional vector z. The dimension of nz can be, thus, very large.  

This response vector z for a specific hurricane scenario, described by the model parameter vector 
x, may be accurately estimated by numerical simulation, once an appropriate high-fidelity model is 
established (see discussion later). Since the high-fidelity model requires extensive computational effort 
for each analysis, a surrogate model is also developed for simplification of the risk evaluation (see 
discussion later). This surrogate model is based on information provided by a number of pre-computed 
evaluations of the computationally intensive high-fidelity model, and ultimately establishes an efficient 
approximation to the entire response vector for each hurricane scenario. The relationship between each 
component of the actual response zi and corresponding component of the response that is provided 
through the surrogate model ˆiz is ultimately expressed as  

 ˆ( ) ( )i i iz z  x x  (2) 

where εi is the prediction error between the surrogate model and the high-fidelity model, assumed 
to be zero mean (since the contrary indicates a bias) Gaussian random variable with  standard deviation 

i
 . This choice of probability distribution incorporates the largest amount of uncertainty (Taflanidis 

and Beck 2010), in terms of Information Entropy, under the constraints that only the mean and 
variance are known. The standard deviation 

i
  can be finally approximated by comparison of the 

high-fidelity and surrogate models over a set of hurricane scenarios chosen to serve as validation 
points. This then completely defines the prediction error εi and the relationship between zi(x) and ˆ ( )iz x  

in a probabilistic sense. Note that additional modeling errors can be incorporated in the relationship (2)
, for example the errors introduced by the approximate description of hurricane by a small dimensional 
vector x (Resio et al. 2009; Taflanidis et al. 2012) or the errors associated with the assumptions made 
about tides. These errors can be similarly probabilistically characterized, though determining their 
statistics is not as straightforward because a set of scenarios for validation is not typically available.  

Hurricane risk quantification 
Hurricane risk may be then quantified in terms of the response ẑ  provided by the surrogate model 

and the probability density function p(x) describing the uncertainty in the input hurricane parameters. 
For real-time risk evaluation, i.e., predicting the risk due to an approaching hurricane, p(x) may be 
constructed through standard climatological error estimates provided by the National Hurricane Center 
(http://www.nhc.noaa.gov/verification/verify4.shtml). This information can be then used to adopt a 
probabilistic description for the model parameters. In this case, each component of x can be selected to 
follow an independent Gaussian distribution with mean equal to the forecast quantities and standard 
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deviation equal to the associated statistical error. On the other hand, for long-term hurricane risk 
evaluation for a region (Resio et al. 2009), p(x) is selected based on statistical data or atmospheric 
models for the entire region (Emanuel et al. 2006) and it further incorporates information on 
occurrence rates for hurricanes, not just on relative plausibility of the model parameters. The study by 
Resio et al. (2009) includes a detailed discussion for selection of p(x) for the Gulf of Mexico.  

Risk is finally expressed as some desired statistic of the response z, for example the probability 
that the wave height will exceed some specific threshold or the median wave runup. The exact 
selection used for these statistics leads to definition of the risk consequence measure h(.). Ultimately 
for any component zi of the response vector the risk, denoted Rj, is provided by the probabilistic 
integral  

 ˆ[ ( )] ( )i iX
R h z p d  x x x  (3) 

where X corresponds to the region of possible values for x. Through appropriate selection of h(.) 
all potential hurricane risk quantifications can be addressed through this approach. For example, if Rj 
corresponds to the expected value for some zi then ˆ[.] ( )ih z x . If on the other hand Rj corresponds to 

the probability that some zj will exceed some threshold βi then (Taflanidis and Beck 2008) 
ˆ[.] ( )i i ih P z    where Pi(.) corresponds to the cumulative distribution function for the model 

prediction error εi. This simplifies to 

 
ˆ ( )

ˆ[ ( )] Φ
i

i i
i

e

z
h z




 
  

  

x
x  (4) 

for the proposed case of Gaussian distribution for the model prediction error, where Φ[.] denotes 
the standard Gaussian cumulative distribution function. Note that this measure explicitly includes 
model error estimates, as model predictions less than the threshold i may still have a small probability 
of exceeding the threshold and vice versa. As the model prediction error approaches zero, the risk 
measure collapses to zero if ˆ ( )i iz x , and one if ˆ ( )i iz x . 

 

Hurricane risk estimation 
The risk integral in Equation (3) can be estimated by stochastic simulation (Robert and Casella 

2004). For the simplest approach (Direct Monte Carlo), and using N samples of x randomly selected 
from p(x), the estimate for Ri is given by  

 
1

1ˆ ˆ[ ( )]   
N

k
i i

k

R h z
N 

  x  (5) 

where vector xk denotes the sample of the uncertain parameters used in the kth
 simulation. As 

N  , then ˆ
i iR R  but even for finite, large-enough N, Equation (5) gives a good approximation 

for the risk given by Equation (3). The quality of this approximation is assessed through its coefficient 
of variation, δ obtained by (Robert and Casella 2004) 
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which decreases [improved accuracy for estimation of (3)] proportional to N . Exploiting the 
computational efficiency of the surrogate model (used for estimation of ˆiz ) a large value can be 

selected for N, facilitating thus a high-accuracy estimate. This accuracy may be further improved by 
adopting some advanced stochastic simulation approaches for variance reduction, such as Importance 
Sampling (Taflanidis and Beck 2008).  

Note that this stochastic-simulation-based risk assessment approach facilitates an efficient 
estimation of risk for different quantifications (different selections for h[.]) since the response 

ˆ{ ( );  1,..., }k
iz k Nx  needs to be estimated only once; the various selected risk quantifications then 
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require merely estimation of the different risk consequence measures h[.] which is computationally 
straighforward.  

HIGH-FIDELITY HURRICANE RESPONSE EVALUATION 
For any given hurricane scenario, the parameter vector x along with the chosen hurricane track 

history defines the wind and pressure fields over time through a parametric hurricane model (Phadke et 
al. 2003). Using these wind and pressure fields, the surge and wave response for the entire coastal 
region of interest can be calculated with a high-fidelity model, which for this study is 
SWAN+ADCIRC (Westerink et al. 2008). ADCIRC solves the shallow-water equations for water 
levels and the momentum equations for currents. The variables are defined on unstructured triangular 
finite element grids at the vertices (Westerink et al. 2008). Waves are computed using the unstructured 
version of the SWAN non-phase resolving wind wave model. SWAN solves for wave action density 
which evolves in time, geographic space and spectral space. Source terms in the governing wave action 
density equation account for wave growth by wind; action lost due to whitecapping, surf breaking and 
bottom friction; and action exchanged between spectral components due to nonlinear effects in deep 
and shallow water. The unstructured grid version of SWAN is based on triangular elements with the 
action density function being defined at the vertices. Of course, waves and circulation interact despite 
being well separated in frequency space. SWAN+ADCIRC have been fully integrated into a 
comprehensive modeling system allowing full interaction between model components. Since the 
variables for both models are defined at identical locations (i.e. triangle based vertices), there is no 
interpolation that has to be performed between the two models. Furthermore in the highly efficient 
parallel implementation of SWAN+ADCIRC, all inter-model communication is intra-core, and while 
intra-model communications in inter-core, it is predominantly local along the sub-domain edges and 
only between adjacent sub-domains. This makes the combined code highly scalable and efficient. 

Additionally, wave action can increase inundation considerably in the swash zone at the ocean’s 
edge, which is intermittently wet and dry, from wave runup and drawdown. An approximate approach 
is adopted here for efficient evaluation of these effects; a large number of one dimensional transects 
are defined along the perimeter of the region of interest, with each transect extending 1000m inland 
and up to 2000m offshore. A two dimensional array of initial water levels and wave heights is then 
defined at the offshore end of each transect, with values based on information about the anticipated 
wave environment characteristics provided through the initial SWAN+ADCIRC runs. One 
dimensional Boussinesq model analysis is then performed for all these parameter combinations, 
yielding a prediction for the wave runup along each transect (Demirbilek et al. 2009). These results are 
then used through a simple interpolation scheme, to provide an estimate of maximum inundation 
distance along that transect for any input for wave or water level. 

RESPONSE SURFASE SURROGATE MODELING 

Moving least squares response surface approximation for a scalar output 
A response-surface (Myers and Montgomery 2002) surrogate model approach is adopted here to 

approximate in real-time the response z obtained by the computationally expensive ADCIRC+SWAN 
numerical model. This is established by expressing each zi(x), where x is the nx=5-dimensional vector 
defining the hurricane characteristics, through j=1,…,NB preselected basis functions bj(x) through 
introduction of coefficients aij{x}  

 
1

ˆ ( ) ( ) { } ( ) { }
NB T

i j ij ij
z b a


 x x x b x a x    (7) 

where b(x) and ai{x} are the vectors containing the basis functions and coefficients, respectively. 
A common choice for basis functions is a complete second order approximation: 
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The coefficients ai{x} are calculated by initially evaluating z(x) (through the high-fidelity 
numerical model) for a set of hurricane scenarios with characteristics spanning the entire region of 
interest for x (representing probable and significant future hurricane scenarios), and then by 
minimizing a weighted mean squared error over these scenarios between zi(x) and the approximation 
established through Equation (7) (Choi et al. 2001; Myers and Montgomery 2002). The weights in this 
mean squared error are also a function of x (what is formally known as moving least squares response 
surface approximation); this improves the efficiency of the approximation by giving higher importance 
to high-fidelity hurricane scenarios (support points) that are similar to the new scenario which we are 
trying to approximate (Taflanidis 2012). Appendix B provides further details on these tasks. Ultimately 
the approximation established through the moving least squares response surface is given by  

 1ˆ ( ) ( ) { } { }T
i iz x b x M x L x F         (10) 

where matrices M{x}, L{x} and Fi are defined in Appendix A, and depend on the weighting 
functions selected for the interpolation as well as vectors b(.) and z(.) evaluated at the locations of the 
support points.  

Implementation for surge prediction for inland locations 
Though the response surface approximation described in the previous section is a generalized one, 

i.e., it does not depend on the characteristics of the response quantity zi, its implementation for inland 
locations needs to additionally address the challenge that they do not always get inundated (in other 
words dry locations might remain dry for some storms). Though some scenarios in the database include 
full information for the surge height ζi (when location i gets inundated), some provide only the 
information that the location remained dry. One solution to this problem is to develop a surrogate 
model (Burges 1998) for the binary response quantity describing the condition of the location, i.e., 
either wet or dry. If we additionally need to know the storm surge ζi, some alternative approach needs 
to be established, one that allows each scenario in our database to provide full, exact or approximate, 
information for ζi. To facilitate this, the following approach is proposed. The surge height ζi is 
described with respect to the zero sea level as reference point. When a location remains dry the surge 
height for it is selected as the one corresponding to the nearest location (nearest node in our high-
fidelity numerical model) that was inundated. Figure 2 illustrates this approximation for an example 
with a one-dimensional transect (note that this approach is ultimately applied in the context of the full 
high-fidelity model, not simply with respect to one-dimensional transects). Once the database is 
adjusted for ζi (for the scenarios for which the location remained dry), the response surface 
approximation for ζi follows directly the steps discussed in the previous section. Comparison of ζi to 
the elevation of the location provides finally the answer as to whether the location was inundated or 
not, whereas the storm surge is calculated by subtracting these two quantities. Thus this approach 
allows us to gather simultaneous information about both the inundation (binary answer; yes or no) as 
well as the storm surge elevation. More importantly, it falls within the generalized response surface 
model discussed in the previous section. Of course it does involve the approximation illustrated in 
Figure 2 for enhancing the database with complete information for ζi for all hurricane scenarios. 

 

Zero 
reference 
level

Scenario 1

Scenario 2

Location 1 Location 2 Location 3 Location 4

3
1

3
2

i
k: surge level for location i for scenario k

For scenario 2, location 3 remains dry and 
closest inundated location is location 2

Coast

 
 

Figure 2. Illustration of selection of surge height for an example with a one-dimensional transect. Corrections 
for the surge in location 3 are shown 
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Response surface approximations for entire response vector z 
The approximation for the entire vector z is established by approximating each zi through Equation 

(10) and augmenting in vector format the results. This is ultimately expressed in a simple mathematical 
form as  

 1
1 2ˆ ( ) { } { }   where  [ ... ]

z

T
n

 z b x M x L x F F F F F  (11) 

This is a computationally-inexpensive approximate model (only based on matrix manipulations); 
thus it can be exploited for real-time predictions, but requires that a large number of high-fidelity 
model simulations be performed in advance (this information is ultimately included in F). Note that 
information from models runs (SWAN+ADCIRC) is only incorporated in F; the rest of the matrices in 
(11) are independent of any model. As such the approach is extendable to any output of interest and 
can be easily augmented to include information from additional high-fidelity simulations as they 
become available.  Finally, the statistics of the prediction error due to the response surface surrogate 
modeling can be approximated by the statistics of the difference ˆ{ ( ) ( )}i p i pz zx x  over any sample set 

of hurricane scenarios described by {xp; p=1,…,NE} chosen to act as validation points for the response 
surface. This leads to the following maximum likelihood estimate for the prediction error standard 
deviation (Grimmett and Stirzaker 2001)  

  
2

1

1
ˆ( ) ( )

E

i

N

i p i p
pE

z z
N



  x x  (12) 

This completely defines the probability model for the prediction error εi since it has been already 
assumed to follow a zero mean Gaussian distribution.  

 

Request  evaluation 
of surrogate model 

Define 
p(x)

Select impact and exact risk 
quantification and estimate risk 

 
 

Figure 3: Graphical user interface for automated risk assessment tool 

AUTOMATED RISK ASSESSMENT 
The theoretical/computational developments in the proposed framework share one significant 

drawback: their complexity creates a technological barrier that effectively isolates them from non-
expert users. As a result, these advances may not directly translate to the intended benefactors of the 
risk assessment framework (decision makers) and the constituents they serve (public at large). To 
reduce this barrier between this methodology and end users, automated risk assessment tools can be 
developed by leveraging the computational simplicity and speed of the proposed surrogate model, 
which is only based on simple matrix manipulations. These resulting standalone tools require minimum 
computational resources to run as they perform only simple mathematical manipulations expressed 
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through equations (2) and (7), as well as access to the database of high-fidelity model runs. Figure 3 
shows the Graphical User Interface (GUI) of the tool developed for the illustrative example that will be 
considered next, which examines inundation risk over the coastline of Oahu for an approaching 
hurricane. Through this tool the user can define track and strength characteristics (and thus p(x) as 
previously discussed) and then request evaluation of the response, which is rapidly computed based on 
the surrogate model. The user can then select some risk quantification for a specific response of 
interest (for example probabilistic mean surge or wave height when a storm is 48 hours from landfall), 
which defines h(.) as discussed previously, and finally request calculation of the risk based on (2). 
Ultimately such tools allow non-technical end-users to leverage the full power of the proposed risk 
assessment framework and can be used for planning emergency response during real hurricane events 
approaching landfall, or for making long-term planning decisions based on fictitious scenarios.  

APPLICATION TO REAL-TIME RISK ESTIMATION FOR OAHU 

High fidelity model and simulations 
The computational domain developed for the high-fidelity simulation of the hurricane response in 

this study, encompasses a large portion of the northern Pacific Ocean and extends from 0 (equator) to 
35 degrees north and from 139 to 169 degrees west. The grid incorporates 1,590,637 nodes and 
3,155,738 triangular elements. Minimum grid resolution at the domain edge is 10km, and maximum 
resolution of 30m is found in complex coastal areas such as bays and harbors. Bathymetric (Figure 3) 
and topographic data applied to the grid came from a variety of sources. For the numerical simulation, 
SWAN applies 10 minute time steps while ADCIRC applies 1 second time steps. A SWAN+ADCIRC 
simulation runs in 16 wall clock minutes per day of simulation on 1024 cores on Diamond,  a 2.8 GHz 
dual quad core based machine with a 20 Gbit/sec InfiniBand interconnect (http://www.erdc.hpc.mil/). 
This model was validated by simulating tides as well as by hindcasting Hurricane Iniki (1992), 
comparing to water levels as well as wind wave data.  More details on the model itself and the 
validation may be found in (Kennedy et al. 2012).  
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Figure 4: Bathymetry of the grid around Oahu and Kauai (left) and Basic storm tracks (right) 

Based on information from the NWS on historical storms, a suite of hurricane scenarios was 
created. These scenarios will ultimately correspond to the support points for the surrogate model, and 
were chosen so that they cover most future hurricane events that are anticipated to have significant 
impact on Oahu. Five basic storm tracks were considered, representing different angles of final 
approach θ. These tracks are shown in Figure 4. Landfall was defined to correspond to the point where 
each hurricane crosses 21.3 degrees north and fourteen different landfall locations, xo, were chosen for 
the grid of storms, corresponding to 157.60, 157.85, 158.10, 158.30, 158.60, 158.90, 159.20, 159.50, 
159.80, 160.00, 160.40, 160.70, 161, 161.5 degrees West. Three different values for the central 
pressure cp were used, 940, 955 and 970 mbar, and similarly three different cases for the forward 
velocity vf were considered, 7.5, 15 and 22.5 knots. Finally two different values were considered for 
the radius of maximum winds, Rm, 30 and 60 km. A suite of 630 storms was then selected to efficiently 
describe the entire grid of hurricane scenarios generated through these potential parameter values. The 
response for these storms was then computed by the ADCIRC+SWAN model, a process which 
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required ultimately more than 1,200,000 computational hours. Such simulations can be performed 
outside of hurricane season, removing real-time forecasting constraints on time to execute runs and 
perform quality control.  All results of interest were stored, including maximum significant wave 
heights and surge levels throughout each simulation. All analyses were performed assuming high tides 
of 0.4m, taken to represent worst-case scenario for the hurricane risk in this region.  

For the wave breakup 750 transects were considered around the island and for each transect a 
matrix of 169 combinations of wave height and water level was created. The maximum and minimum 
values of these parameters for each transect were selected based on the information from the 630 runs. 
For each case the inundation was then predicted by a 1-D Boussinesq analysis. If zwk is the wave break 
up response at transect k and Hsk and ζsk are the corresponding wave height and still water level, 
respectively, then this approach leads to a mapping of the form  zwk=g(Hsk,ζkj|DD), where DD represents 
the data obtained through the 169 1-D Boussinesq analyses for each transect. 

Surrogate model  
Using the information from the pre-computed 630 storms, a moving least squares response surface 

surrogate model was built. Full quadratic basis functions were chosen for xo, θ, cp, vf and linear basis 
functions for Rm, and the common Gaussian weight function in Equation (5) is adopted with Dd 
adaptively selected so that it includes for each x 100 support points (out of the possible 630). To 
evaluate the fit of the surrogate model and further estimate the prediction error variance based on 
Equation (8) 20 hurricane scenarios were chosen to represent the validation set for the surrogate model. 
The characteristics for these scenarios were randomly selected within the possible values for the 
hurricane model parameters x.  Over the entire domain, the average prediction error standard deviation 

i
  is 0.32 m for the significant wave height and 0.11 m for the still water level, but both these 

quantities vary significantly over the region of interest.  The corresponding values for the average 
mean error are 3.5% and 7%, respectively, which indicate high accuracy of the established 
approximation.   

Figure 5 shows a comparison for the significant wave height predictions for the response surface 
surrogate model and the high-fidelity numerical model. The comparison between parts (a) and (b) of 
the figure shows very good agreement, which validates the accuracy of the established surrogate 
modeling. It should be noted that the cost of the surrogate model for a single evaluation is at least 107 
times less expensive than the high fidelity models, which is what allows it to be used for real time 
prediction on a PC. 
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Figure 5: Significant wave height contours for a single hurricane track; comparison between surrogate and 
high-fidelity models 

Risk assessment 
The established response surface surrogate model can be then used to predict the response, in 

particular the still water level and significant wave height, for any desired hurricane scenario and 
simultaneously for all locations of interest around the island. The aforementioned interpolation scheme 
can then be used to additionally calculate the wave breakup for each transect using as input these two 
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predictions. A sample implementation is presented for a hurricane approaching landfall to Oahu (42 
hours before landfall) in Figures 6-8. 
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Figure 6: Sample results for risk assessment implementation for wave height 
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Figure 7: Still water level (SRL) contours with 10% probability of exceedance around Oahu, with 
magnification of Pearl Harbor and airport region. 
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Figure 8: Wave runup level (WRL) contours with 10% probability of exceedance around Oahu, with 
magnification of Pearl Harbor and airport region. 

The characteristics of the hurricane for this sample risk assessment implementation are actually the 
ones depicted in the GUI in Figure 3. The mean values for hurricane parameters are 

 o[158.12 205 950mbar 16knots 45mbar]o
mean x  (13) 

For defining p(x) these parameters are assumed to follow independent Gaussian distributions with 
standard deviation selected based on prediction errors for time until landfall equal to 42 hours.  

 [0.28 17.5 10.5 mbar 3.5 knots 2.5 km]o o x  (14) 

Figures 6 shows the median wave height and the probability that the wave height with exceed 9 
meters. Figures 7 and 8 show, respectively, the SWL (still water level) and WRL (wave runup level) 
contours around Oahu with 10% probability of exceedance.  

For automated implementation of this risk estimation, a stand-alone tool is developed, as shown in 
Figure 3. N=2000 evaluations of the surrogate model are used for the stochastic simulation of Equation 
(5) [thus facilitating a small coefficient of variation (6) and high accuracy estimates for the 
probabilistic integral (3)]. The total time needed for this risk assessment is 4 min on a 3.2 GHz single 
core processor with 4 GB of RAM. This corresponds to a tremendous reduction of computational time 
compared to the high-fidelity model, which required over 1500 hours for analysing a single hurricane 
scenario, and ultimately is the foundation that allows for the real-time risk assessment described here. 
The outputs from the risk estimation are graphically presented as contours for the surge and wave 
runup inundation around the island as well as contours for the significant wave height in the region 
around Oahu, as shown in Figures 6-8.   
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CYBER-INFRASTRUCTURE FOR FURTHER SUPPORT OF INITIATIVES 
Undoubtedly, research advances and our knowledge of hurricane hazards and their impacts are 

rapidly evolving, but are often not effectively harnessed in a manner that leverages the intellectual and 
computational resources and cyberinfrastructure being developed across the country. The automated 
risk assessment tools developed in this study aimed to bridge this gap. To further promote this task, the 
University of Notre Dame recently started a new initiative called CYBER-EYE: A Cyber- 
Collaboratory for National Risk Modeling and Assessment to Mitigate the Impacts of Hurricanes in a 
Changing Climate (Kijewski-Correa et al. 2012). Figure 9 demonstrates the concept and the 
preliminary development trajectory. The goal is to establish a virtual organization built around a cyber-
enabled computational framework that synergizes existing models, simulation tools and risk 
assessment methodologies to assess the impacts of hurricanes. The automated risk assessment tool 
discussed in this study (Figure 3) serves as the preliminary prototype for the effort. Furthermore, 
instead of attempting to replicate the intellectual infrastructure of competing institutions focused on 
various aspects of hurricane risk reduction, the approach taken is to leverage the resources and 
knowledge of these peers in an innovative way. In fact, this approach is entirely consistent with the 
recent calls by the National Weather Service (NWS) and NOAA for interoperable systems and 
collaborative tools and workflows (Cline 2009), as well as the UN Second Session of the Global 
Platform on Disaster Reduction in Geneva (June 16-17, 2009), who called for enhanced 
knowledge/technology transfer through cyberinfrastructure. A secondary benefit of this cyber-enabled 
approach will be the capability for engagement of wide ranging stakeholders, through employment of 
web-based, user friendly interfaces that open far greater potentials for dissemination and engagement 
(as shown in Figure 9).  

The introduction of CYBER-EYE represents an effort to pool and integrate resources in the spirit 
of collaboration to maximize the impact of all the investments made not only by the University of 
Notre Dame but by others in the field. As we move along the development trajectory, the goal is to 
enhance the platform capabilities to maximize the benefit to end users in the virtual coast. As such, the 
portal will eventually transition to a Big Map Board (BMB) and will adopt a prototype system for 
“teleconferencing over maps” to provide a virtual conference room with a shared maps, drawing tools, 
and continual real-time updates (Kijewski-Correa et al. 2012). 
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Figure 9: CYBER-EYE concept and development trajectory. 

CONCLUSSIONS  
A probabilistic framework has been developed here for hurricane risk estimation with particular 

emphasis on real-time risk evaluation. This methodology uses hundreds of high fidelity model runs, an 
efficient surrogate model that reproduces well the high fidelity model, and a description of uncertainty 
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to estimate wave, water level and runup probabilities at a much reduced computational cost. The 
framework is efficient enough that it may easily be used for prediction of risk as a hurricane 
approaches landfall. However, there is a large up-front computational cost to evaluate the high-fidelity 
models. As an illustrative example, implementation of hurricane risk estimation for the island of Oahu 
in Hawaii is presented. In this stand-alone tool, the interface provided to the user requires only a basic 
understanding of the five parameters used for the simplified description of each hurricane scenario. 
Results demonstrate the versatility of the proposed approach for creating efficient tools that are simple 
enough to cross over technology adoption barriers. The total time needed for risk assessment using the 
developed standalone tool is 4 min on a 3.2 GHz single core processor with 4 GB of RAM. High 
accuracy is established for the risk estimates as the coefficient of variation for that estimate using 2000 
sample runs is very small.  

This framework may be readily applied to other regions and other problems where high fidelity 
model runs may be run in advance but risk estimates are required in real-time. This methodology may 
also be readily extended to include derivative products such as building and infrastructure damage 
during a storm, or loss estimates. Current initiatives at the University of Notre Dame to further support 
these effort were also briefly reviewed.   
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APPENDIX A 
This Appendix provides further details on the response surface surrogate modeling. The 

coefficients ai{x} for the surrogate model (7) are calculated by initially evaluating zi(x) in a set of 
NS>NB hurricane scenarios (called support points for the surrogate model) {xΙ; I=1,…,NS}, and then 
by minimizing the mean squared error over these points between  zi(x) and the approximation 
established through Equation (7) (Myers and Montgomery 2002). In the Moving Least Squares (MLS) 
approach the coefficients are dependent on x, and are selected by minimizing a weighted sum of 
squared error, with weights that are a function of x (Taflanidis 2012) 

      2

1
ˆ{ } { } ( ) ( ) { } { } { }
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R i I i I i i i iI
J w z z
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    x x x x Ba x F W x Ba x F  (15) 

where the following quantities have been introduced 
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and w{d(x;xI)} is a weight function that depends on the distance d between the point x for which the 
approximation is established and each of the support points 
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with vi representing the relative weight for each component of xj (Taflanidis 2012). The 
introduction of the weights w{d} aims at reducing the approximation error at each point by performing 
a weighted local averaging of the information obtained by the support points that are closer to it.  
Without these weights, the coefficient vector, ai, would be constant over the whole domain for x which 
means that a global approximation would be established (global least squares). The efficiency –i.e, fit 
to zi(x)–  of global approximations depends significantly on the selection of the basis functions, which 
should be chosen to resemble zi(x) as closely as possible.  Such a selection is not always 
straightforward. The MLS circumvents such problems by establishing a local approximation for ai{x} 
around each point in the interpolation domain.  This leads to a smaller dependence of the fit on the type 
of basis functions used (Breitkopf et al. 2005). On the other hand the efficiency of the MLS 
interpolation depends on the weighting function chosen. This function should prioritize support points 
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that are close to the approximation point, and should vanish after an influence radius Dd.  This radius 
should be selected so that a sufficient number of neighbouring supporting points are included to avoid 
singularity in the solution for ai{x}. This means that Dd should include at least NB points. As 
weighting function in this study the exponential type of function  
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is selected, with c=0.4 and k=1 (Gaussian). The relative weights vi ultimately define the moving 
character of the approximation within the different directions in the X space and should be chosen to i) 
establish a normalization for the different components of x but more importantly ii) provide higher 
importance for components that have larger influence on the values of zi(x) (Taflanidis 2012). 

Finally the minimization of Equation (15) is a standard quadratic optimization problem and yields  

 
1{ } { } { }  where 

{ }   and  { } { }

i i
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M B W x B L x B W x
       (19) 

Ultimately Dd in Equation (18) should be selected so that M is invertible. Finally Equation  (7) 
yields  

 1ˆ ( ) ( ) { } { }T
i iz x b x M x L x F         (20) 

The fit of the response surface approximation may be judged by selecting a number of hurricane 
scenarios to represent the validation points (control points), denoted by xp; p=1,…,NE , and then 
evaluating the mean error ME, given by (Myers and Montgomery 2002)   
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