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BORE-INDUCED MACROVORTICES OVER A PLANAR BEACH:     THE CROSS-SEA 

CONDITION CASE 

 

Matteo Postacchini1, Maurizio Brocchini2 and Luciano Soldini3 

Wave breaking over submerged topographic obstacles leads to vorticity generation and, at times, to the generation of 

strong offshore-directed rip currents. The generation of finite-length breakers may also be induced by the positive 

interaction of wave trains propagating to shore with a relative angle. Such an interaction gives rise to a short-crested 

system, this, in turn, generating both breakers of finite crossflow length and an intense associated vorticity. We here 

analyze such a vorticity generation mechanism specifically focusing on the location where wave breaking occurs. To 

this purpose we both derive a simple theory, based on the well-known theory of wave ray propagation, and perform 

ad-hoc numerical simulations, using a NSWE (Nonlinear Shallow Water Equations) solver. A fairly good comparison 

between such preliminary theoretical and numerical results suggests that the present work be used as the basis for 

future analyses of vorticity generation by cross-seas. 
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INTRODUCTION 

Many sandy beaches are characterized by the presence of submerged obstacles, be they either 

natural (e.g. bars generated by significant sea storms) or manmade (e.g. rubble-mound breakwaters).  

As a consequence of significant sea storms and obstacles of finite longshore length waves break over 

and a vortex generates at each of its edges.  The complex mechanism, described in Brocchini et al. 

(2004), evolves leading to the detachment of the vortices from the obstacle edges and to their migration, 

either to the onshore or to the offshore.  Such a migration occurs in response to three different 

mechanisms that play the main role in the propagation of macrovortices in the nearshore region, 

especially in the gap between contiguous bars or breakwaters: i) acceleration of the background flow, ii) 

self-advection by sloping beds and iii) mutual advection by oppositely-signed vortices. 

Brocchini et al. (2004) showed how, in the presence of isolated breakwaters, a vortex generates at 

each edge of the barrier, slowly propagates along the barrier, then detaches and moves towards the 

shoreline: such a behavior was confirmed by numerical simulations run using a NSWE (Nonlinear 

Shallow Water Equations) solver, that also illustrate the beach slope influence on the vortex trajectory. 

On the other side, Kennedy et al. (2006) analyzed three different cases, by mean of both laboratory 

experiments and Boussinesq-type numerical simulations, of the vortex generation and migration at 

nearby breakwaters.  For what concerns the vorticity patterns both upstream and downstream of the 

breakwater, the influence of the gap between contiguous breakwater was investigated, also obtaining a 

good agreement between experiments and numerical tests.  In the case of very wide gaps (isolated-

breakwater case), some vortices generate at the breakwater heads, move toward the offshore, following 

a diagonal path to the shoreline, and their motion is forced only the self-advection due to the beach 

slope.  In the cases of very small gaps between the barriers, the vortices migrate to the offshore and, 

besides being self advected, they undergo intense mutual advection. 

The latter cases highlight a typical behavior that occurs at neighboring breakwaters, i.e. the 

generation of rip currents, that are more pronounced when the gap is narrow.  Hence, the connection 

between such currents, associated with different water levels between the inshore and the offshore side 

of the beach, and mutual advection of seaward-directed vortices, is fundamental to understand the 

hydrodynamics, and, furthermore, the morphodynamics, occurring at a protected beach. 

The described vortex generation and evolution are a direct consequence of the finite-length 

breakers that arise when a wave overpasses a submerged obstacle.  Another phenomenon may lead to 

the generation of breakers of finite crossflow length, i.e. the positive interaction of wave trains traveling 

from the offshore to the inshore with a different inclination: we call this the “cross-sea condition” (see 

Fig. 1, top left panel).  The interaction between waves approaching the shore from different directions 

generates a sort of short-crested system (bottom left panel of Fig. 1), as suggested by Silvester (1974).  

Crests and troughs intersect, this leading to much smaller minimum water levels and much larger 
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maximum water levels, with respect to a single wave train.  Hence, breaking occurs earlier, i.e. at larger 

depths, and the breaker is characterized by a finite length, like in the case of submerged obstacles.  The 

larger wave heights generate both an intense vorticity nearby the breaking location and a strong motion 

close to the seabed, thus inducing significant sediment transport. 
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Figure 1 – Sketch of the vorticity generation by wave-wave interaction (top left panel), short-crested system 

induced by the wave interaction (bottom left panel) and picture of the main processes related to the cross-

sea condition (right panel). 

 

Many of the processes occurring in the nearshore region may induce cross-sea conditions and, thus, 

lead to breakers of finite longshore length.  The most important are: i) the diffraction behind natural or 

artificial islands and behind breakwaters, ii) the refraction, due to bathymetry gradients, of consecutive 

waves, characterized by the same initial direction (e.g. in deep waters) and different celerity, iii) the 

reflection, due to natural or artificial walls, that generates a sort of “steady three-dimensional” wave 

pattern (right panel of Fig. 1). 

The literature on the interaction of waves that leads to cross-sea conditions the nearshore is not 

abundant. Among the available papers we recall that describing the laboratory experiments by Fowler 

and Dalrymple (1990), who studied the influence of two incident wave trains, characterized by different 

frequency and inclination, on the evolution of rip currents.  Other important studies about crossing 

waves have been undertaken by Craig and Nicholls (2002), who performed a perturbation analysis and 

some numerical computations of two- and three-dimensional periodic traveling water waves, and by 

Hammack et al. (2005), who compared experimental and numerical results of progressive obliquely-

interacting wave trains in deep waters. 

In the perspective of investigating the main features of the cross sea, especially in the presence of 

waves of different characteristics (height and period) and different angles to shore, a series of numerical 

simulations have been run by the NSWE solver.  The solver is based on a pseudoinviscid approach and 

a makes use of a shock-capturing method. 

Furthermore, starting from the ray (see, e.g. Mei 1983), that is used to investigate the refraction 

occurring over weakly varying bathymetries, we have built a new theory that enables to study the 

breaking location.  The theory uses the shallow water approximation and some results are compared 

with the numerical results obtained from the NSWE simulations. 
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Section 2 gives a description of the numerical model and introduces the numerical tests.  In section 

3 the cross-sea theory, derived from the original ray theory, is described.  Section 4 shows the main 

results coming from both theory and simulations.  Some conclusions close the paper. 

 

THE NUMERICAL FRAMEWORK 

In the last decades several numerical models for the description of the nearshore flows have been 

arranged.  Many of such models, starting from the three-dimensional Navier-Stokes equations, 

discretize the flow by means of a depth average, that represents a fairly good approximation in shallow 

waters: such models are called 2DH (two dimensional horizontally).  The most common wave-resolving 

2DH models are based on either Boussinesq-Type Equations (among others, Madsen et al. 1997) or 

Nonlinear Shallow Water Equations (e.g. Brocchini et al. 2001).  Recently, hybrid models, that use both 

BTE and NSWE, are representing the present fashion: the solver FUNWAVE-TVD by Shi et al. (2012) 

is an example. 

Here below, a description of the NSWE solver and an illustration of the numerical tests of cross 

sea, run with the code, are presented. 

 

The numerical solver 

The numerical solver here presented describes the hydrodynamics in the nearshore regions by using 

the NSWE (details can be found in Brocchini et al. 2001).  These are wave-resolving equations of 

conservation of mass and momentum, along x and y, and the involved variables are depth averaged: 

 0,,,  yxt (vd)(ud)d , (1) 

 xxxbxyxt BFgzgdvuuuu  ,,,,, , (2) 

 yyybyyxt BFgzgdvvuvv  ,,,,, , (3) 

where (x,y,z) are Cartesian orthogonal coordinates, being the still-water level z=0; d(x,y,t) = (x,y,t) + 

zb(x,y,t) is the total water depth,  and zb being, respectively, the free-surface level and the seabed with 

respect to the still-water level (see also Fig. 2); v=(u,v) is the depth-averaged velocity vector, u(x,y,t) 

and v(x,y,t) being, respectively, the onshore and longshore components; Fx and Fy are the viscous 

terms; duCBx v  and dvCBy v  are the friction terms, written in Chezy-type form; C is the 

dimensionless Chezy coefficient. 

 
Figure 2 - Seabed profile (‒) and free-surface elevation (···). 

 

Hence, the solver takes into account both the seabed-friction contribution (through Bx and By), 

fundamental in all the nearshore processes occurring in the surf zone (see Antuono et al. 2012) and the 

viscous contribution of the dissipative forces (through Fx and Fy), i.e. i) turbulence, ii) secondary flows 

(compound-channel case), iii) wave breaking (nearshore case).  Actually, for the present simulations, 

we use a pseudoinviscid approach (Fx=Fy=0) and the breaking is described as a shock, i.e. a simple 

water level discontinuity (see Whitham 1974). 
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The NSWE solver discretizes equations (1)-(3) by using a conservative finite-volume method and 

evaluates the intercell fluxes by means of Weight Averaged Flux (WAF) method.  A TVD scheme is 

also applied to avoid spurious oscillations due to discontinuous solutions. 

 

The numerical simulations 

Several configurations of cross sea have been tested, each lasting 250s.  The bathymetry is 

characterized by a flat sloping beach (slope i=1/30) inside a domain where x=(0-205)m and y=(0-

150)m.  Such a domain is identical to that used for the numerical simulations of Brocchini et al. (2004), 

where the flat beach was interrupted by a single submerged breakwater.  The spatial discretization is 

x=1m and y=2m along x and y, respectively. 

All the tested waves are regular and the input characteristics (height H0 and period T0) are given at 

the offshore boundary (x=0) in the form of a time series of both water elevation and velocity.  The 

number of wave trains traveling from the offshore to the inshore (n) and the inclination of each of them 

(i, with i=1:n) are also given as boundary conditions.  Table 1 shows all the characteristics of the tests 

where the number of wave trains is n=2 (A-type tests) and such trains are symmetrical with respect to 

the center of the domain (at y=75m).  The same waves, with an additional train characterized by 3=0°, 

have been used to run 12 tests more (B-type tests): e.g. the test characterized by H0=0.5m, T0=5s, 1 

=30°, 2 = -30° and 3 = 0°, is the test 1.B. 
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Figure 3 – Main characteristics of the numerical 

domain. 

 

Table 1. Characteristics of the A-type numerical 

simulations. 

Test name H0 (m) T0 (s) 1 (°) 2 (°) 

1.A 0.5 5 30 -30 
2.A 0.5 5 45 -45 
3.A 0.5 5 60 -60 
4.A 1.0 5 30 -30 
5.A 1.0 5 45 -45 
6.A 1.0 5 60 -60 
7.A 0.5 10 30 -30 
8.A 0.5 10 45 -45 
9.A 0.5 10 60 -60 
10.A 1.0 10 30 -30 
11.A 1.0 10 45 -45 
12.A 1.0 10 60 -60 

 

THE APPROXIMATED CROSS-SEA THEORY 

In order to understand how waves modify when they travel over a sloping beach, an important 

theory was built, based on Snell’s law of refraction.  Similarly to what happens to the light when 

passing through the interface between two media characterized by different index of refraction, the 

direction of a wave changes when it is traveling over a sloping beach: the water depth plays the same 

role of the index of refraction.  Some decades ago, based on the refraction law, Mei (1983) presented 

the theory of wave rays that, while approaching the shore, tend to become orthogonal to the shore.  The 

water volume in between two rays is called “ray channel” and it enlarges going from the offshore to the 

inshore, i.e. the more the water depth reduces, the more the rays widen. 

We here apply the ray theory, under the assumption of steady-state waves, to the cross-sea 

condition.  Hence, we assume a scheme that is slightly different from that of Mei (1983) because takes 

two wave rays that, approaching the shore over a sloping beach, converge.  This represents the main 

difference between the ray theory and the new “cross-sea theory”, both following the main assumption 

of energy conservation.  The sketch of such a new interpretation of the ray channel is shown in the left 

panel of Fig. 4. 
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Figure 4 – Cross-sea theory applied to a generic bathymetry (left) and to a beach of fixed slope: planar (top 

right) and cross-shore (bottom right) view. 

 

The left panel of Fig. 4 illustrates how the new theory works in the presence of two rays, associated 

to two wave trains approaching the shore with different angles: in correspondence to a certain depth (h0) 

both rays are characterized by an amplitude (A0), a celerity (C0), a group velocity (Cg0) and a wave 

number (k0).  At that position the ray-channel width is d0.  While approaching the shore, the rays come 

closer and, at a depth h, all the characteristics change (A, C, Cg, k, d).  Following Mei (1983): 
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If we consider to work in shallow waters (i.e. k0h0 and kh << 1, hence sinh(2k0h0)2k0h0 and 

sinh(2kh)2kh), we can simplify Eq. 4: 
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from which it is clear that the wave amplitude increases moving shoreward (A/A0>1), because h0>h 

(depth variation) and d0>d (mutual interaction of rays). 

Given that waves may be taken as linear only if they are not breaking, we decide to use the 

breaking line as the limit of our theory.  Hence, as illustrated in the right panel of Fig. 4, we assume that 

the cross-sea theory holds from the offshore (outer boundary) to the breaking line (inner boundary), and 

it is defined in a convergent channel defined between two rays representing the obliquely incident wave 

trains (side boundaries).  As a consequence, we can substitute the variables referring to a generic depth 

h, appearing in Eq. 5, with those referring to the depth of the breaking line hb.  We obtain: 

 
2
1

4
1

00

0

 




























bb

b

d

d

h

h

A

A




, (6) 

where the wave amplitudes can be taken as Ab=Hb/2 and A0=H0/2, where Hb and H0 are, respectively, 

the wave heights at the breaking location and at the offshore boundary. 

From the right sketches of Fig. 4 it is possible to extract further geometrical rules to evaluate some 

of the unknowns of Eq. 6.  If the two wave trains are characterized by the same (in modulus) inclination 

, from the top right sketch of Fig. 4 we have: 

 


tan
2

0
b

b x
dd




 (7) 



 COASTAL ENGINEERING 2012 

 

6 

and from the bottom right sketch we can derive: 

 tan0 bb xhh  , (8) 

where  is the beach slope. 

For the evaluation of the breaking wave height we use the simple criterion that directly connect it to 

the water depth (Dean 1968): 

 bb hH  , (9) 

where  is a constant ranging between 0.73 and 0.87. 

Combination of Eqs. 6, 7, 8 and 9 leads to the following equation: 

    
4

2
00

4
02

0
5

0 tan2tan





dhH
xdxh bb  , (10) 

for which no explicit solutions exist. 

 

Application of the cross-sea theory 

To compare theoretical and numerical results, we decide to solve Eq. 10 using the input values of 

the numerical simulations, some of them illustrated in Table 1.  The only unknown in Eq. 10 is the 

breaking location xb, hence the used boundary parameters are: h0=5.5m; d0=150m; i=tan=1/30; 

H0=0.5m, 1.0m; =1=2=30°, 45°, 60°. 

Since the wave period is not taken into account in Eq. 10 because of the shallow water 

approximation (see Eqs. 4 and 5), such a theory give the same results if the wave trains are 

characterized by either T0=5s or T0=10s.  Further, such a theory is only valid for two incident wave 

trains converging and focusing in a unique breaking line, this enabling us to disregard the numerical 

tests where n=3. 

 

RESULTS 

In this section results of both numerical simulations and cross-sea theory are presented.  In the 

beginning, some clarifications about the way we choose the breaking point in the numerical domain are 

given.  Then, comparisons between results coming from theory and from numerical simulations are 

illustrated.  Some results about vorticity and vortex trajectories are shown in the last subsection. 

 

Identification of the breaking position in the numerical tests 

We extrapolate the breaking position xb , with respect to the offshore boundary, from the numerical 

results of the water level  at the different time steps and in correspondence of the central cross section 

(i.e. y=75m).  Fig. 5 illustrates all the water level outputs obtained from t=200s and t=250s, with step 

t=2s.  Among all the outputs, the maximum water elevation (highlighted by a black circle in Fig. 5) 

represents the breaking point.  Hence, at that location we have both hb and xb. 
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Figure 5 – Individuation of the breaking location from the numerical tests. 

 

Comparison between cross-sea theory and NSWE simulations 

The comparison between analytical solutions of the cross-sea theory and results of the numerical 

tests refers to the localization of the breaking waves xb.  According to the numerical tests carried out 

using the NSWE and described in Table 1, the solution of Eq. 10 have been found for the same cases 

and using a breaking parameter =0.78.  Input data and results of Eq. 10 are summarized in Errore. 

L'origine riferimento non è stata trovata.. 

 
Table 2. Input data and results of the cross-sea theory. 

d0 (m) 150 150 150 150 150 150 

h0 (m)  5.5 5.5 5.5 5.5 5.5 5.5 

i 1/30 1/30 1/30 1/30 1/30 1/30 

 0.78 0.78 0.78 0.78 0.78 0.78 

H0 (m)  0.5 0.5 0.5 1 1 1 

 (°) 30 45 60 30 45 60 

xb (m)  104 70 42 82 60 38 

 

Since the cross-sea theory is only valid in the shallow water field, i.e. kh << 1, as imposed to have 

Eq. 5, there is no influence of wave period T0 on the solution.  Hence, each analytical result is compared 

with the results obtained from two numerical tests, because two different wave periods (T0=5s and 10s) 

have been used for each combination of wave height (H0) and wave-train inclination ().  The 

comparison is illustrated in Fig. 6. 
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Figure 6 - Comparison between results of numerical simulations and theoretical solutions for different wave 

angles: =30° (o), 45° (x) and 60° (+). 

 

Fig. 6 shows quite different results between numerical and theoretical values of the breaking 

position, probably due to either the approximation of the cross-sea theory, i.e. a linear theory is 

compared with a numerical model built on nonlinear equations, or the breaking phenomenon in the 

NSWE framework, that is predicted early because of the absence of dispersive terms. 

 

Vorticity patterns and vortex trajectories 

In order to investigate similarities with the nearshore hydrodynamics generating when submerged 

obstacles are present in the domain, the vorticity field has been analyzed.  In fact, similarly to a 

configuration with a planar beach protected by submerged breakwaters (see Brocchini et al. 2004, 

hereinafter BR04, and Kennedy et al. 2006, hereinafter KE06), breakers of finite length generate as a 

consequence of the short-crested system induced by the cross sea. 

Such a mechanism, as well as what happens in between two contiguous breakwaters (see, for 

details, KE06), is mainly characterized by the generation of counter-rotating vortices at the edges of the 

breaker, corresponding to the heads of each structure in the case described by KE06.   

In the presence of submerged breakwaters, offshore-directed currents, also known as rip currents, 

generate in the gap between such barriers, because of the different water level between the protected 

part of the beach and the offshore.  Such currents are responsible of the vortices motion, that detach 

from the breakwater edges and are transported seawards, also enforced by the mutual advection due to 

their opposite sign, as described in BR04. 

In the cross-sea condition case the generation of finite-length breakers leads to a pair of counter-

rotating vortices, as sketched in the left panel of Fig. 1.  The mechanism is similar to that described by 

KE06 in the presence of gaps width equal to breakwaters length (wider rip-current case).  The coupling 

between vortices generated by close breakers enables the mutual-advection mechanism and makes all 

the vortices of the domain move toward the offshore. 

As an example, we here show (Fig. 7) some instants that are significant for the vorticity patterns 

generating in the numerical domain during test 2.B, characterized by H0=0.5m, T0=5s, 1 = 45°, 2 = -

45° and 3 = 0°.  In particular, such a simulation has been run for more than 250s, used for all the tests, 

to observe the vorticity evolution and the vortex paths up to the offshore end of the domain.  In this 

specific case, the generation of counter-rotating vortices is evident in the central part of the domain, i.e. 

at y=(60-80)m, during the first 150s (panels a, b, c).  In the next instants (between 180s and 240s, 

panels d, e, f), the central vortices enlarge because  attracted by other large eddies generated laterally, 

i.e. at about y=30m and y=120m, these enabling the mutual-advection mechanism to occur.  Such a 

mechanism pushes the new pairs of vortices, one in the top part of each panel (y>80m), one in the 

bottom part (y<70m), to the offshore boundary and force them to also move laterally, i.e. toward the 

closest lateral boundary.  This is clear especially for t=(240-300)s (see panels f, g, h). 
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a) b)  

c) d)  

e) f)  

g) h)  

Figure 7 - Vorticity-patterns evolution for the case 2.B at different times: a) t=90s, b) t=120s, c) t=150s, d) 

t=180s, e) t=210s, f) t=240s, g) t=270s, h) t=300s. 

The obtained pattern is, hence, similar to that obtained in the case of a rip current in the presence of 

a submerged isolated breakwater (see the experimental results of KE06) and the main direction of both 
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pairs is inclined of about 25° with respect to the x axis (see left panel of Fig. 8, where trajectories of the 

two central vortices are plotted). 

Results presented in Fig. 7 are quite similar, but not identical, to those found when only two 

inclined waves (A-type tests) are forced in the numerical domain.  In such cases the trajectories of both 

pairs of vortices seem to be almost orthogonal to the offshore boundary, the case with |1| = |2| = 45° 

being characterized by the most rapid vortices.  In fact, for what concerns tests 1.A and 3.A, the former 

is characterized by both pairs of vortices almost stuck around x=100m, the latter by vortices fixed at 

around x=125m.  For the case 2.A, characterized by the same inputs of the previously mentioned tests 

except for the wave-train inclination, two rip currents are clearly visible, as shown in the right panel of 

Fig. 8.  As already mentioned, such currents, that refer to the central counter-rotating vortices, seem to 

be almost orthogonal to the y axis. 

 
Figure 8 –Trajectories of the central counter-rotating vortices for the long-duration test 2.B (left) and for test 

2.A (right): positive counter-clockwise (o) and negative clockwise (+) vortices. 

 

CONCLUSIONS 

In the present work, the scope of investigating the cross-sea condition case has been undertaken by 

both running some numerical simulations, using a NSWE solver, and developing a new theory, starting 

from the well-known ray theory (Mei 1983).  Different cross-sea conditions have been tested using the 

numerical solver, changing both the characteristics of the input waves (height and period), the 

inclination of the wave trains and the number of the incoming wave trains.  For each simulation the 

breaking point has been found from the central cross-section of the domain. 

Since the new theory has been approximated accounting for the shallow water condition, some 

comparisons have been made on the basis of the distance of the breaking point from the offshore 

boundary, but non perfect match has been found between numerical and analytical results. 

Concerning the vorticity generation in the numerical domain, patterns similar to that occurring in 

the presence of submerged obstacles, such as breakwaters, have been found, with vortices propagating 

towards the offshore with different speed and angles, depending on both inclination and number of the 

wave trains. 
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