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The 2010 Chile tsunami affected the entire coast of the Biobio Region, where several bays were flooded, and seawater 
surged hundreds of meters into rivers. However, no inundation occurred in the 2km wide Biobio River, located at the 
northern entrance of the Gulf of Arauco. Likewise, minimal inundation (less than 2m) was found on the gulf’s eastern 
coast, just south of the river mouth. The study was done by means of numerical simulation with TUNAMI code. Four 
(4) nested grids with 81”, 27”, 9” and 3” resolution were defined.  Several scenarios were simulated, including

1835, 1960 and 2010 events. The first two scenarios considered only a uniform rupture zone, while the others 
uniform initial condition. Another set of simulations were run without the presence of the 

fied bathymetry, so that its effect on tsunami propagation could be studied. It can be concluded 
that the Biobio canyon is very important in tsunami propagation in the Gulf of Arauco. There is a mitigation effect on 
the eastern side of the Gulf due to the refraction and dispersion generated by its presence. The change in wave 
direction is enhanced due to wave diffraction generated by the Santa María Island, causing the wave fronts to move in 

south direction, preventing severe damage to the eastern side. However a direct impact of the tsunami in the 
southern end of the Gulf can be observed 

tsunami propagation, submarine canyon, run up, inundation height 
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As a first approach, the effect of a canyon can be studied using traditional ideas about the 

propagation of tsunamis, i.e. refraction, diffraction and reflection (Levin and Nosov, 2009) in which the 
bathymetry plays an important role. This analysis extends the study of Quezada (2000a), who makes a 
brief analysis on the influence of the islands and peninsulas arguing a mitigating effect without 
considering the existence of the submarine canyon. 

 
The refraction phenomenon has been studied and defined as the change in direction of a wave front 

due to the changes in wave celerity, which is generated by the variation of the water depth (Murata et al, 
2010). The reflection is generated by the interaction of the tsunami wave with abrupt bathymetry 
changes or interaction with steep coastal cliffs (Murata et al, 2010). These abrupt changes and their 
effects on tsunamis propagation have been studied by Levin and Nosov (2009), who defined 
analytically the reflection and transmission coefficients for a rectangular step. In a similar manner, 
Goring (1979) studied the transformation of tsunamis over the continental shelf by means of a series of 
steps and Mofjeld et al (2000) analyzed the wave behavior with and oblique impact on an abrupt 
bathymetry change, which consider the critical angle of incidence. 

 
Furthermore, the effect of submarine canyons has been studied by Jinadasa (2008) and Ioualalen et 

al (2007), who analyzed the effect of the 2004 tsunami in Sri Lanka and Bangladeshi Coasts, 
respectively. They found an amplification of the wave amplitude due to the presence of the submarine 
canyons. In addition, Didenkulova and Pelinovsky (2011) studied the shoaling and run-up in narrow 
bays and canyons, concluding that when the depth varies smoothly along the channel axis, a weak 
reflection provides significant shoaling effects. 

 
The main objective of this study is to analyze the tsunami propagation over the Biobio submarine 

canyon in the Gulf of Arauco. Firstly, the methodology is explained, and then the results and 
conclusions are presented. 

METHODOLOGY 
The topography was built from LIDAR data with 2.5m resolution. The datum was set as the mean 

sea level. The bathymetry was obtained from different sources such as GEBCO with resolution 30”, 
Nautical charts N° 6120 and 6110, and data collected with echosounder along the coastal area between 
the mouth of the Biobío river and the Bay of Coronel. 
 

The TUNAMI code was used for the numerical simulations. This code is based on the linear 
shallow water theory at deep water, while in shallow water it uses nonlinear shallow water theory with 
quadratic friction and advection of momentum, which corresponds to a vertical integration, whereas the 
resistance of seabed is assessed by the Manning resistance coefficient (Imamura et al, 2006).The 
numerical integration is performed using an orthogonal coordinate system, which proposes a scheme of 
four nested grids with different spatial resolution. The 4 grids are 81 ", 27", 9 "and 3" resolution, which 
correspond to the grids A, B, C, and D, respectively. Figure 2 shows the grids B, C and D used in the 
simulations. The dimensions and location of the grids were selected such that the Courant number, 

( )dxdtghCr max= , satisfies the condition Cr <0.7, since larger values generated numerical 

instabilities. In the above equation, h  is the maximum water depth at each grid, dt is the time step for 
numerical integration and dx is the grid size in the x and y direction. 
 

In general, accurate tsunami models require information about the slip distribution caused by the 
earthquake (Kundu 2007), which does not occur in a uniform manner throughout the surface of the 
rupture zone. These models are constructed from a seismic and tsunami wave inversion procedure 
(Satake and Kanamori, 1990).  This work considered four events, namely 1730, 1835, 1960 and 2010. 
The first two events do not have enough information to build a heterogeneous rupture model; therefore, 
a uniform initial condition is used. For the 2010 event we used the model proposed by Delouis et al 
(2010), which is in good agreement with recorded arrival time and amplitude of the first wave with the 
tidal gauge at Talcahuano and with visual observations of the following waves (Aránguiz, 2010). The 
initial condition for the 1960 event is built from the rupture model proposed by Barrientos and Ward 
(1990). Despite this model was not contrasted with sea level measurements, it is important to mention 
that this rupture model was developed from more than a hundred of field observations and 
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measurements, besides horizontal stresses calculation (Barrientos and Ward , 1990).  Figure 3 shows 
the four initial conditions used in the analysis with their respective grid A. 
 

The same set of simulations also considered a modified bathymetry, thus the Santa Maria Island 
was removed in order to analyze the direct effect of it on tsunami propagation. 
 

 
Figure 2. Grids B, C and D with 27", 9" and 3" spatial resolution, respectively, which were used in the 
numerical simulations 

 

 
Figure 3. Initial condition of the four historical tsunami events considered in the analysis, 1730, 1835, 1960 
and 2010. 
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RESULTS AND DISCUSSION 
Figures 4 and 5 show the snapshot of the first tsunami wave corresponding to the 1960 and 2010 

events, respectively. The colored surface indicates the sea surface elevation, where blue indicates a 
decrease and red an increase of sea surface elevation with respect to the mean sea level. For better 
understanding, thick lines in green, blue and back are included to indicate equal surface elevation of 
0.5, 1.0, and 1.5m, respectively. In addition, the bathymetry was included as thin black lines every 
200m in order to better identify the influence of bathymetry on tsunami wave propagation. 

 
Figure 4 shows that the first wave enters the Gulf of Arauco and Biobío Canyon 40 minutes after 

the 1960 earthquake. It is possible to see that the 0.5m contour line of the sea’s surface demonstrates a 
refraction effect due to deceleration of the wave front over the continental shelf and the higher celerity 
over the canyon. A similar situation is observed at 45 and 50 min with the 1.0m contour line, moreover, 
higher wave amplitude is observed at both side of the canyon due to shoaling effect, which is also 
observed at time 61min. It is important to notice the contour lines at the southern side of the canyon 
move perpendicular to the coast in a north-south direction, which result in a direct impact to the 
southern end of the Gulf, as observed at time 66 min.  

 

 
Figura 4. Snapshot of surface elevation for the 1960 Chile tsunami. The thin black lines represent the 
bathymetry, while the thick lines show equal surface elevation. 

Now, Figure 5 shows a similar behavior of the 2010 event. 4 min after the earthquake the first 
tsunami wave is just over the submarine canyon, and no significant effect can be observed. However, at 
time 8 min the wave front experienced refraction and shoaling due to the shallower water at both side 
of the canyon and sea surface elevation higher than 1.5m are observed. The refraction can be observed 
clearly at time 12min, where the wave front propagates divergently from the canyon. In addition, as 
observed in the previous case, contour lines show a north-south propagation direction along the coastal 
zone, as seen at times 12 and 16min. Wave concentration are produced at both sides of the river mouth 
due to the presence of the canyon and shoaling effects.  
 
 Figure 6 show a wave front propagating in the Gulf of Arauco considering two cases: the left hand 
side shows the real bathymetry, while the right hand side corresponds to a modified bathymetry in 
which the island has been removed. This case corresponds to the 2010 Chile tsunami. It can be 
observed that the island’s most important effect is a delay in the arrival time, and an enhancement on 
wave direction change due to wave diffraction.   
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Figura 5. Snapshot of surface elevation for the 2010 Chile tsunami. The thin black lines represent the 
bathymetry, while the thick lines show equal surface elevation. 

 

 
Figure 6. Wave front propagating in the Gulf of Arauco for the 2010 Chile tsunami. Left: real bathymetry which includes 
the Santa Maria Island, right: Modified bathymetry without the island. 
 
 In contrast to what was concluded by Jinadasa (2008) in Sri Lanka and Ioualalen et al (2007) in 
Bangladesh, the Biobio submarine canyon seems to be a tsunami natural barrier for the river mouth. 
They observed that submarine canyons could amplify tsunami wave amplitudes and increase 
inundation heights. On that ground, it is important to analyze the geometry of those canyons and 
bathymetry around them. For the case of Sri Lanka, the canyons are about 20km long and 5km wide, 
straight and perpendicular to the coast, which is also mostly straight. The submarine canyon in front of 
the Bangladeshi coast runs in a NE direction and starts at around 25km south of the coast along the 
continental shelf. The length of the canyon is in the order of 140km, with maximum depth of 1200m 
and 20km in width. In this case is also important to take into account that the shape of the Bay of 
Bengal and the wide continental shelf could propagates edge waves which are important in tsunami 
behavior [Yamazaki, et 2010] and could cause tsunami wave amplification. Also, the nature of the 
sediments in the area (often made of mud) could have had an important influence in the propagation 
and dissipation of the tsunami wave, though this effect is currently poorly understood. Thus, the results 
for the case of Bangladesh should be viewed with caution. The length of the Biobio canyon is in the 
order of 120km and can be divided into several segments which give a zigzag shape. Figure 9 shows 
the three above mentioned canyons, and for the purposes of comparison they are shown in the same 
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Figure 7. Comparison of submarine canyons in Sri Lanka (left) Bangladesh (center) and Biobio (right)
 
 The above described behavior is mainly due to the refraction of the wave front, however, 
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from the canyon segment but in the opposite direction to the previous case, as shown in 
Figure 4, but at time 50min. In the case of an incident wave from the NW, 
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Figure 8. Bathymetry of the Biobio canyon with contour lines every 200m.
of the canyon and the red arrows shows incident (I), reflected 
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change in directions of the Biobio canyon in several segments 
g the concentration of tsunami wave and favoring the refraction phenomenon. 

. Comparison of submarine canyons in Sri Lanka (left) Bangladesh (center) and Biobio (right)

behavior is mainly due to the refraction of the wave front, however, 
phenomenon due to different segments of the canyon must be considered as 

obío canyon with its three main segments with contour lines 
The arrows indicate the direction of an incident tsunami wave (I) for both cases, one from the 

reflected (R) and transmitted (T) are also indicated in the figure.
approaches the canyon from the SW, firstly it experiences refraction 

Santa Maria Island, and then part of the wave front is reflected and part is transmitted due to the steep 
walls of the canyon. However, the direction of the transmitted wave is more perpendicular than the 
incident wave, thus the wave diverges from the canyon. This phenomenon can be clearly seen 

In a similar manner, the wave front experiences reflection-transmission phenomenon 
he second segment. In this case, the transmitted wave changes its direction away 

but in the opposite direction to the previous case, as shown in 
, but at time 50min. In the case of an incident wave from the NW, the 

previously described behavior, as shown in Figure 5 at times 8 and 12 min.

 

Bathymetry of the Biobio canyon with contour lines every 200m. The dashed lines represents the main segments 
he red arrows shows incident (I), reflected (R) and transmitted (T) tsunami waves

One of the most important feature which can be observed from the previous analysis, is that the 
wave front enters the Gulf of Arauco in the same direction, regardless the origin of the tsunami. The 
main reason to such behavior is the wave refraction due to the canyon and the wave diffract
the island. These effects generate a north-south propagation direction of the tsunami wave along the 
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coastline just south of the river mouth, which explains the low run-up (<2m) during the 2010 Chile 
tsunami (Quezada et al, 2010). However, this propagation direction result in a direct impact to the 
southern end of the Gulf, where the towns of Arauco, Llico and Tubul experienced large run ups of 4.2, 
8.4, 13.4m, respectively (Fritz et al, 2011). 
 
 Now, figure 9 show the inundation area and maximum inundation heights at the river mouth 
corresponding to 6 hours of simulation. In order to show the location of the canyon, contour lines every 
50m water depth are also shown in the figure. It is possible to see that higher inundation height occur at 
the sides of the river mouth and not at the river mouth itself. Therefore, there is no significant seawater 
surge into the river and the inundation height is rather slow, which is in good agreement with the 
arguments of Quezada (2000a). In addition, the coastal zone south of the river mouth does not 
experience large inundation either, which is mainly due to the north-south propagation direction of 
tsunami waves and the presence of dunes along the coast.  
 

 
Figure 9. Inundation area and inundation height corresponding to the four analyzed events: 1730, 1835, 1960 and 2010 
tsunami.  Contour lines every 50m show the bathymetry and every 2.5m the topography. 
 

CONCLUSIONS 
 It can be concluded that the Biobio canyon is very important in tsunami propagation in the Gulf of 
Arauco, thus there is a mitigation effect on the eastern side of the Gulf due to the refraction and 
dispersion generated by its zigzag shape. The change in wave direction is enhanced due to wave 
diffraction generated by the Santa María Island, causing the wave fronts to move in a north-south 
direction, preventing severe damage to the eastern side.  However a direct impact of the tsunami in the 
southern end of the Gulf can be observed. 
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