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This paper provides a review of our recent developments in reformulating the quasi-streamfunction (Ψ) formalism

proposed by Kim et al. (2001) to relax the common constraint of kinematic bottom boundary condition. A restricted

form of the Hamilton’s principle for irrotational flows is formulated only on surface variables. This transforms the

problem to dynamical equations on the surface and a constraint equation related to the interior water column. The

interior solution can be applied to express Ψ in terms of the natural canonically conjugate variable. The modified Ψ-

formalism promises to provide a natural framework for the study of wave over arbitrary bathymetry and in the presence

of strong shear flow if Clebsch variables are included. We demonstrate the formalism for horizontally homogeneous

flows over mild topography, where asymptotic formulations for the Hamiltonian and Lagrangian are derived. The

Hamiltonian shows consistency with Zakharov’s results up to the cubic order and the Lagrangian is written in terms of

measurable variables.
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INTRODUCTION

Nonlinear wave-wave interaction in the ocean has drawn an increasing number of attention that spans a

wide range of topics from the effects of wave refraction-diffraction to rogue-wave generation, wave scatter-

ing, steepening and breaking. In these topics, nonlinear coupling during wave shoaling over uneven seabed

is a subject of high theoretical and practical interest because it undergoes substantial effects through this

process. This yields many formalism to derive the nonlinear evolution equation of waves over a varying

bottom.

In the classical approach, conservation of mass and suitable boundary conditions form the equations of

wave motion within the water column. Perturbation parameters corresponding to several basic assumptions

such as the locally-flat bottom or the relatively-shallow water were introduced to expand the governing

equations into a perturbation series. One obtains the desired equations by keeping or discarding terms in

this expansion, depending on various factors such as the wave steepness ka, bottom slope∇h and the relative

depth kh, etc. Several nonlinear wave equations, as the Hasselmann (1961; 1963a; 1963b), Agnon et. al.

(1993; 1997), the Boussinesq (1871) and some of their variations follow this classical approach.

Another approach to deriving the nonlinear wave-wave interaction equations is by use of a variational

principle, especially Seliger and Whitham’s (1968) variational principles in continuum mechanics. They

proposed the Lagrangian formulation for irrotational flows, and also extended this principle to rotational

flows by including the Lin constraint (Bretherton, 1970), which coincides with Clebsch’s representation of

the velocity field Clebsch (1857). Proper variational formulation for the equations of water waves were

introduced by Luke (1967), Zakharov (1968; 1999), Miles (1977) and many others. All these variational

principles are developed in term of the velocity potential Φ, therefore they satisfy the kinematic bottom

boundary condition approximately.

More recently, the quasi-streamfunction approach (hereafter Ψ-formalism), first derived by Kim et al.

(2001; 2003), and applied to water surface waves by Kim and Bai (2004) and Toledo and Agnon (2009),

appears to hold the promise of providing a simple way to describe wave propagating over uneven bot-

toms with minimal restrictions. The Ψ-formalism naturally defines the flow field via conservation of mass

and fulfills exactly the bottom boundary condition (Kim and Bai, 2004). However, in these previous work

(Kim and Bai, 2004; Toledo and Agnon, 2009), the ability to represent arbitrary slopes is eliminated by

imposing the flat-bottom vertical structure to achieve mild-slope type equations. Furthermore, the varia-

tional principle is then applied to the Fourier components of the remaining horizontal variations of Ψ, thus

discarding the constraints arising from variations in the vertical structure.

Reformulation of this theory could transform the Ψ-formalism into a useful tool for the study of wave

over varying topography. We correct the slight abuse of the variational principle incurred upon ignoring
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vertical variations, investigate the consequences of the less constrained theory for simple horizontally ho-

mogeneous flows, and finally, understand the meaning of the functionΨ. The hope is that the Ψ-formalism

will become a useful tool in the description of nonlinear wave-wave interaction processes in the ocean.

The governing equations are re-derived in their original lagrangian formulation without any approxima-

tions in the next section, and then solved using an expansion in powers of the free surface displacement η in

Section Homogeneous flows solutions. Alternative variational formalisms are derived in Section Hamilto-

nian and Lagrangian formalisms. TheΨ Hamiltonian with Zakharov’s results in terms of Φ were compared

and discussed. One also proposes a Lagrangian only containing measurable quantities. This work is dis-

cussed and summarized in the last section.

GOVERNING EQUATIONS

In this paper, t denotes the time and the horizontal vectors are boldface, e.g., x = (x1, x2) = x1x̂1 +

x2x̂2 = x jx̂ j, with j = 1, 2. We will prefer Einstein’s repeated-indices summation convention (last equality).

The origin of the coordinate system is set on the undisturbed free surface with the vertical axis (ẑ) pointing

upward. The hat denotes unit vector in the direction of the axis. The free surface is defined by z = η(x, t)

and the bottom by z = −h(x). The symbol ∇ denotes the horizontal gradient.

Define the quasi-streamfunction as a vector:

Ψ(x, z, t) =

∫ z

−h

u(x, s, t)ds. (1)

The velocity field is defined as,

u = Ψz, (2)

where u(x, z, t) = u j(x, z, t) x̂ j is the horizontal velocity vector of components u j, with j = 1, 2. From the

continuity of the incompressible fluid, we obtain the vertical velocity w as Kim and Bai (2004):

w = −∇ ·Ψ. (3)

Defining the total spatial gradient along a given surface z = ζ(x, t) as

Dζ = ∇ · + (∇ζ) · ∂z, (4)

the total divergence of Ψ on the bottom z = −h is

D−h ·Ψ = −w − (∇h) · u = 0, (5)

which is the standard kinematic bottom boundary condition. This equality always holds because Ψ|z=−h =

0 by (1). Therefore the quasi-streamfuntion Ψ unconditionally satisfies the kinematic bottom boundary

condition (Kim and Bai, 2004).

The dynamics of the fluid system can be discussed using a variational principle. In the Eulerian descrip-

tion, Seliger and Whitham (Seliger and Whitham, 1968) showed that the Lagrangian density for irrotational

flow is defined as the difference of the kinetic energy T and potential energy V plus the Lagrangian mul-

tipliers accounting for the continuity equation and kinematic constraints. The advantage of writing the

Lagrangian density in terms of quasi-streamfunction is that, it is the solution of the continuity equation and

kinematic bottom boundary condition. Therefore the Lagrangian L and the Lagrangian density L are given

as:

L =

∫

L d2x; L = φ
[

ηt + ∇ ·Ψ +Ψz · ∇η
]

η +
1

2

η
∫

−h

[

|Ψz|
2 + (∇ ·Ψ)2

]

dz −
g

2
η2, (6)

where φ(x, t) is a Lagrange multiplier for the free-surface kinematic condition (e.g., Kim et al., 2001, 2003;

Kim and Bai, 2004).

One can simplify (6) significantly. Using the total derivative operator Dη equation (4) at the free surface

z = η, the last two terms in the surface constraint becomes φDη ·Ψ = −
(

Dηφ
)

·Ψ = − (∇φ) ·Ψ, L in (6) can

be written as

L =
[

φηt − ∇φ ·Ψ
]

η +
1

2

η
∫

−h

[

|Ψz|
2 + (∇ ·Ψ)2

]

dz −
g

2
η2. (7)
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Moreover, the terms in the first bracket are evaluated on the free surface z = η, while the other terms

are using variables within the whole water column. The term of vertical integral in (7) may be rewritten as:

Lvert =
1

2

"
d2x

∫ η

−h

dz
[

∂iΘ
i −Ψ ·

(

∂2
zΨ + ∇∇ ·Ψ

)]

(8)

where

Θ = Ψ∇ ·Ψ + (Ψ ·Ψz) ẑ (9)

is a 3-dimensional vector with divergence ∂iΘ
i = ∇ · (Ψ∇ ·Ψ) + (Ψ ·Ψz)z. Because Θ = 0 on z = −h,

applying Gauss theorem yields

Lvert =
1

2

"
η

ΘdS −
1

2

"
d2x

∫ η

−h

Ψ ·
(

∂2
zΨ + ∇ (∇ ·Ψ)

)

Ψ dz, (10)

where dS = ndA. dS is the free surface element, n is the normal vector to the free surface, which can be

written as

n =
(−∇η, 1)

√

1 + (∇η)2
; dA =

√

1 + (∇η)2d2x. (11)

The first and second integrals in (10) represent an integral over the the free surface and the interior of

the fluid respectively. The Hamilton’s principle requires the stationary condition of the Lagrangian L:

δ

∫

Ldt = 0.

In particular, the surface terms change independently from the interior terms, which implies that their

variations mush also vanish independently. The variation of the interior term of L in equation (7) leads to

the “Laplace”-like equation

∂2
zΨ + ∇ (∇ ·Ψ) = 0 (12)

Therefore the second integral in (10) zeros.

One finds the following simplified expression for (10) written entirely in terms of surface variables:

Lvert =
1

2

"
η

d2xΨ · (Ψz − ∇η(∇ ·Ψ)) , (13)

This yields a very simple expression for (7):

L =
1

2
Ψ jK jlΨ

l − ∇φ ·Ψ + φηt −
g

2
η2; with K jl = (δ jl∂z − ∂ jη∂l). (14)

where δ jl is the Kronecker symbol.

Taking variation with respect to η, φ, and Ψ, respectively:

ηt + D ·Ψ = 0 on z = η (15)

φt + (∇ · φ)Ψz −
1

2

[

|Ψz|
2 + (∇ ·Ψ)2

]

+ gη = 0 on z = η (16)

[

Ψz − (∇ ·Ψ)∇η + ∇(Ψ · ∇η) − 2∇φ + (∇η ·Ψz)∇η
]

· δΨ

+
[

Ψ + (∇η ·Ψ)∇η
]

· δΨz = 0 on z = η (17)

Note that the variation δΨz is treated as independent of δΨ since we have a surface boundary and total

derivatives can not be discarded arbitrarily.

Equations (15)-(17) together with the interior equation (12) form the governing equations of the Ψ

formalism in terms ofΨ, η and φ. Equations (15) and (16) are the kinematic and dynamic surface boundary

conditions respectively, and equation (17) is a constraint which relates Ψ with η and φ. No approximations

have been made to equations (15)-(17) such that they are evaluated exactly at the surface.

We can retrieve the linear relationship betweenΨ and φ (Kim and Bai, 2004; Toledo and Agnon, 2009)

by keeping the leading order terms in the constraint equation (17). In this formalism, Ψ is corrected by

higher order terms containing only one power of φ and an arbitrary number of η’s. We will show later

that, η and φ remain canonical variables, which is useful for developing a Hamiltonian description similar

to Zakharov equation (Zakharov, 1999), except that φ is not only the velocity potential at the surface.

Equation (15) and (16) appear to be the dynamical equations of the system.
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HOMOGENEOUS FLOWS SOLUTIONS

Interior solutions

We solve the interior solution of Ψ using a wave-number Fourier representation. Assuming that the

problem is horizontally homogeneous, the unknown functions admit wave number Fourier representation
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where k = k jx̂ j is the wave number vector, and the gk = [g]k is the Fourier transform of g. The short-hand

notation [· · · ]k will later simplify the handling of convolution products resulting from the Fourier transform

of nonlinear terms. Because the functions η and φ are real, their transforms satisfy the regular symmetry

conditions, e.g., ηk = η
∗
−k

with the asterisk denoting the complex conjugate.

Substituting the Fourier representation (18) into the “Laplace-like” equation (12) for the interior flow

yields

∂2
zΨk − k2

Ψk = 0; (19)

with k2 =
∑

j

k jk j where k is the absolute value of the wave number. For mildly sloping bottoms (e.g.,

Mei at al. (2005)), the solution of the equation for ψk is the usual

Ψk =
sinh k (z + h)

sinh (kh)
ψk (20)

where the wave number is assumed to be a slowly varying function of the horizontal coordinate.

Perturbative surface solution

A common approach to seek solutions for surface-gravity wave equations is to expand them evaluated

at the surface in powers of η (e.g., Zakharov, 1999). Expanding equations (15) to (17) by use of Taylor

expansion up to O(ǫ3) (ǫ ∼ ka) yields the following expansions:

ηt + ∇ ·

(

Ψ + ηΨz +
1

2
η2
Ψzz

)

= O(ǫ4) on z = 0, (21)

φt + ∇φ ·Ψz + η∇φ ·Ψzz −
1

2

[

|Ψz|
2 + (∇ ·Ψ)2

]

−
1

2
η
[

(Ψz)
2 + (∇ ·Ψ)2

]

z
+ gη = O(ǫ4) on z = 0, (22)

[

Ψz − ∇φ − ∇(η∇ ·Ψ) −
1

2
∇

(

η2∇ ·Ψz

)

]

δΨ + η {Ψz − ∇φ

−∇η(∇ ·Ψ) − η [∇(∇ ·Ψ)]} δΨz +
1

2
η2 (Ψz − ∇φ) δΨzz = O(ǫ4) on z = 0, (23)

A solution for Ψ in terms of η and φ can be obtained by substituting equation (20) into the constraint

equation (23). After some algebra, the constraint equation (23) in the wave number domain yields

(

1 + mk,k1

)

ψk = Fk,k1
, (24)

mk,k1
=

[

k1 · k̂cthk1h + k1thkh
]

ηk1
+

1

2

[

k1k1 · k̂ + kk1 + thkh cthk1h
(

k1 · k + k2
1

)] [

η2
]

k−k1

(25)

Fk,k1
= i thkhφk + i

∫

dkdk1

2π
k1 · k̂ηk−k1

φk1
+

i

2
thkh

∫

dkdk1

2π
k1 · k

[

η2
]

k−k1

φk1
(26)

where k, k1 are wave numbers, and using the following short-hand conventions: [...]k for the Fourier

transform (18); thkh for tanh kh; and cthkh for coth kh.

Equation (24) may be inverted directly to the order of accuracy required as:

ψk =
(

1 + mk,k1

)−1
F =

(

1 − mk,k1
+ m2

k,k1
+ ...

)

F (27)
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The procedure to write ψk in terms of ηk and φk is now straightforward, albeit tedious. After some algebra,

one finds the following solutions up to O(ǫ3) for ψk:

ψk = ithkh φk − i

∫

dkdk1

2π
k1thkh thk1h ηk−k1

φk1
+ i

∫

dkdk1dk2

(2π)2
Wkqp ηk−k1

ηk1−k2
φk2

(28)

where

Wkk1k2
= k2

(

k1 · k̂ + kthkh thk1h
)

thk2h −
1

2

(

k2k2 · k̂ + kk2

)

thk2h −
1

2
k2thk2h. (29)

It is noticeable that φ is equal to the velocity potential at the surface up to the leading order of (28). In

the full formalism, this interpretation is corrected by higher order terms.

HAMILTONIAN AND LAGRANGIAN FORMALISMS

Within the assumptions made in the development of the approach presented here, it is possible to derive

a Hamiltonian for direct comparison with existing Hamiltonian theories (Zakharov’s) and a Lagarangian

based on observable quantities for applications.

Hamiltonian formulation

The Hamiltonian can be transformed from Lagrangian via the Legendre transformation

H =

∫

d2xH =

∫

d2x (φηt − L) , (30)

which yields

H = ∇φ ·Ψ −
1

2
Ψ · (Ψz − ∇η(∇ ·Ψ)) +

g

2
η2 (31)

An explicit form for the Hamiltonian is obtained by substituting equations (28) into (31). Because the

Hamiltonian is at z = η and the solution (28) is at z = 0, we will expand the Hamiltonian around z = 0 and

write it as a summation of quadratic, cubic and quartic terms:

H = H2 + H3 + H4 + O
(

ǫ5
)

(32)

where, using Zakharov’s (1999) notation for convolution products,

H2 =
1

2

∫

dk
(

k thkh |φk|
2 + g |ηk|

2
)

H3 = −
1

2

∫

dk1dk2dk3

2π
(k2 · k3 + q2k3thk2h thk3h) ηk1

φk2
φk3

δ (k1 + k2 + k3)

H4 =
1

2

∫

dk1dk2dk3dk4

4π2
Tk1k2k3k4

ηk1
ηk2

φk3
φk4

δ (k1 + k2 + k3 + k4) (33)

and the interaction coefficient in H4 is

Tk1k2k3k4
= Vk1k2k3k4

+ Vk1k2k4k3

Vk1k2k3k4
=

1

2
|k1 + k4| k3k4 th (|k1 + k4| h) thk3h thk4h +

1

4
k4 · (2k2 + 2k3 − k4) k3 thk3h. (34)

where δ denotes the delta function. Comparing this to Zakharov (1999), we see that the quadratic and cubic

terms are identical. As for the quartic piece, the term on the first line of equation (34) is identical while the

second line differs. In Zakharov’s Tk1k2k3k4
, the coefficient of tanh k3h in the second term is − 1

4
k3k2

4
. This

discrepancy might be due to the vector nature of Ψ. At this point it is not clear if there are any measurable

consequences of these differences.
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Lagrangian formulation

Based on the expansion described above, we are seeking here a Lagrangian description based on ob-

servable quantities, i.e., the generalized coordinate η and generalized velocity ∂tη. The first step is to elim-

inate φ by solving its equation of motion (15) forΨ in terms of η and ∂tη. Following a similar procedure as

before yields ψk only in terms of ηk and ∂tηk

ψk =
i

k
(∂tηk) − i

∫

dkdk1

2π

(

k̂ · k̂1 cthk1h
)

ηk−k1

(

∂tηk1

)

+i

∫

dkdk1dk2

(2π)2

(

k̂ · k̂1

) (

k1 · k̂2

)

cth (k1h) cthk2h −
1

2
k̂ · k2ηk−k1

ηk1−k2

(

∂tηk2

)

The kinematic surface constraint becomes zero when we substitute this relationship back into equation (14)

(via (18), and (20)). The lagrangian, valid up to quartic order, reads

L = L2 + L3 + L4 + O
(

ǫ5
)

, (35)

where the terms are

L2 =
1

2

∫

d2k

(

cthkh

k
|∂tηk|

2 −
g

2
|ηk|

2

)

L3 =
1

2

∫

dk1dk2dk3

2π

(

1 − 3k̂2 · k̂3 cthk2h cthk3h
)

ηk1

(

∂tηk2

) (

∂tηk3

)

δ (k1 + k2 + k3)

L4 =
1

2

∫

dk1dk2dk3dk4

4π2
Gk1k2k3k4

ηk1
ηk2

(

∂tηk3

) (

∂tηk4

)

δ (k1 + k2 + k3 + k4) (36)

and the interaction coefficient in L4 is

Gk1k2k3k4
=

(

1

2

(

k̂2 · k̂3 + 1
)

|k2 + k3| + k̂3 · k2 + k̂3 · k3

)

(

1 + k̂1 · k̂4

)

cthk3h cthk4h cth (|k1 + k4| h)

+

(

1

2
k3 −

1

2
k̂3 · k4 +

(

k̂3 · k̂3 + k̂2 · k̂3

)

|k2 + k3|

)

cthk3h. (37)

DISCUSSION AND SUMMARY

The original formulation of theΨ-formalism (Kim et al., 2001, 2003) was derived under the constraints

of a flat bottom topography. An application of this work using the mild-slope approximation yields the linear

CMSE (Complementary Mild-Slope Equation) (Kim and Bai, 2004) and its nonlinear extension including

triad interaction (Toledo and Agnon, 2009). In these formulations, Ψ was still regarded as the linear flat-

bottom solution to the wave equations in term of streamfuntion, which is the product of a horizontally-

varying function ψ (x, y) and a vertical structure Z (z). The evolution equations were then derived by the

variations of the approximated Lagrangian with respect of the horizontal component ψ. This study explores

the possibility of reformulating the Ψ-formalism to derive an exact Lagrangian without any assumptions.

This Lagrangian provides a convenient framework for the study of wave over arbitrary bathymetry. In the

present formalism,Ψ, a 2D-vector, allows for a one-one mapping between the surface quantities and interior

solutions, at least for sufficiently small wave slopes.

Following the Lagrangian first proposed by Kim et al. (2001; 2003), a new variationalΨ-formalism is

derived exactly on surface. Applying variational principle to the new Lagrangian yields dynamical equa-

tions on the surface and a constraint equation related to the interior water column. The interior solution

allows one to write Ψ in terms of the natural canonically conjugate variable (η, φ). For horizontally homo-

geneous flows over mild topography, we obtained an asymptotic solution for the constraint equation. A new

Hamiltonian corresponding to the surface Lagrangian is derived via Legendre transformation, and expanded

in terms of η. The perturbative Hamiltonian shows agreement with Zakharov’s results up to the cubic order,

while the different quartic Hamiltonian predicted by our approach might be attributed to the vector nature

ofΨ. We finally solved Ψ in terms of ∂tη and η from the surface kinematic boundary condition and derived

a Lagrangian only containing measurable quantities.
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