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EVALUATION OF A PARAMETRIC-TYPE WAVE TRANSFORMATION MODEL AGAINST 
FIELD AND LABORATORY DATA 

Alireza Jafari1 and Nick Cartwright1 
Predicting wave properties via parametric wave propagation models are broadly used in many coastal engineering 
applications. Numerous researchers have refined these types of models to increase their accuracy including;  Battjes 
and Janssen (1978), Thornton and Guza (1983), Baldock et al. (1998), and Alsina and Baldock (2007). Alsina and 
Baldock (2007), proposed an improved parametric wave propagation models for a non-saturated surfzone which 
returns relatively more accuracy in comparison to others. In this paper, the Alsina and Baldock (2007) model along 
with Baldock et al. (1998) and Thornton and Guza (1983), are applied to data collected in South-East Queensland 
under stormy and calm conditions as well as laboratory data. Some of the comparisons indicate the need to 
incorporate some additional energy loss at the break point to account for plunging type breakers where the existing 
bore dissipation model is insufficient.  

Keywords: Wave transformation model; surfzone hydrodynamics; wave energy dissipation; field data; storm 
condition  

INTRODUCTION  

Parametric wave propagation models are broadly used in many coastal engineering applications. 
Depending on the parameter fitting, they mainly reflect 80%-85% accuracy, which is desirable in most 
coastal area problems (Ruessink et al., 2003; van Rijna et al., 2003). However, errors in wave 
prediction normally add up the amount of computation errors in hydrodynamic related parameters such 
as wave set up, sediment transport, and radiation stress (Guard and Baldock, 2007). Therefore, 
numerous researchers have put effort into this issue to increase the accuracy of parametric wave 
propagation models (e.g. Alsina and Baldock, 2007; Baldock et al., 1998; Battjes and Janssen, 1978; 
Ruessink et al., 2003; Thornton and Guza, 1983). Alsina and Baldock(2007) proposed a modified form 
of the parametric wave propagation model for non-saturated surfzone based on Baldock et al. (1998). 
However, they presented the results against laboratory data. In the present papert, Alsina and Baldock's 
(2007) model, hereafter referred to asAB07, is applied to data collected in South-East Queensland 
under stormy and calm conditions (Jafari et al., 2011), as well as laboratory data. Meanwhile, the 
model of Thornton and Guza (1983), hereafter referred to as TG83, and also Baldock et al. (1998), 
hereafter referred to as B98, were compared to the AB07 results.  

 

PARAMETRIC WAVE MODELS 

Batttjes and Janssen (1978) took the very first step in this field and introduced their pioneer model 
which later modified and refined by others (e.g. TG83, B98, and AB07). Parametric models evaluate 
the wave height across the surfzone using energy flux equilibrium, 
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where, Cg and E are respectively the group velocity and wave energy which can be estimated using 
linear wave theory, 
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where ρ is water density, C is wave phase velocity, k is wave number, h is water depth, and θ is 
approaching wave angle. DE denotes time averaged wave energy dissipation. In parametric models for 
determining DE, primarily, bore dissipation, DB, and secondarily dissipation due to bottom friction, Df, 
are considered (Thornton and Guza, 1983; Baldock et al., 1998; Alsina and Baldock, 2007). 

fBE DDD += (4) 
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Figure 2.Theoretical Rayleigh distribution of wave height (solid line) and breaking wave height 

distribution (shaded are) where H/Hrms≥ Hb/Hrms 

After Batttjes and Janssen (1978),TG83 proposed an empirical weighted Rayleigh distribution, 
based on field data recorded from Torrey Pines beach, 
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where, γ is the ratio of wave height over water depth and n is a variable determined equal to 4 
based on observation.  Therefore, by integrating the product of equation (7) and equation (8), TG83 
proposed the overall energy dissipation as follows (Thornton and Guza, 1983), 
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TG83 needs to be calibrated by means of determining the optimum value of coefficient B via 
iteration. Consequently, achieving the best results from TG83 is limited to the availability of field data.  

B98 obtained the proportion of breaking waves, Qb, directly from the Rayleigh distribution. Qb is 
determined by integrating the Rayleigh distribution over all waves for which H/Hrms≥ Hb/Hrms resulting 
in (Baldock et al., 1998), 
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where, H* = Hb/Hrms and Hb is maximum wave height just before breaking. B98 applied Nairn's 
(1990) expression of Hb which is as follows, 
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where, S0 is offshore wave steepness. B98 assumed that the relationship of H/h in equation (7) is 
close to 1. Also, they suggested that factor B can be considered 1 for simplification purposes. Thus, the 
time averaged rate of energy dissipation proposed by B98 does not assume prior knowledge of the 
surfzone condition, which is given by (Baldock et al., 1998), 
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Figure 4. Surfzone bathymetry based on the Australian height datum (AHD) used in the modelling  

Consistent with data obtained from the nearby Gold Cost wave rider buoy, the manometer tube 
wave data was divided into thirty minute time blocks and wave characteristics were extracted using 
both spectral and zero-crossing approaches. Result are compared and verified against Gold Cost wave 
rider buoy. The buoy data obtained from the Queensland Department of Environment and Resource 
Management. Results shows a very good agreement between the recorded data and the buoy data 
(Jafari et al., 2011). Table 1 presents the field condition and wave statistical data sets used in the 
comparison against the AB07, B98, and TG83 models. These wave properties are extracted from zero 
up crossing method. Also these data are just extracted from one block of data sets (thirty minutes of 
recording). The tide condition of each block of data presented in Figure 5.   

In order to fairly evaluate the Rayleigh distribution based models, the recorded data of each event 
were first analysed to check that they indeed conformed to the Rayleigh distribution. Figure 6 displays 
the comparison of the recorded data by offshore sensor against Rayleigh distribution for all events. This 
comparison reveals that the recorded field data do conform to the Rayleigh distribution (the poorest R2 
is 0.97).  

 

Table 1. Field Condition tested against model prediction, where So is offshore wave steepness 

Event Offshore Boundary  
(m) 

Offshore Depth 
 (m) Hmax Hrmso Tp Tave So 

TC Hamish (11/03/2009) 500 7.6 4.8 2.3 8.2 8.2 0.022

East Coast Lows (21/05/2009) 500 7.8 5.4 3.2 9.4 10.0 0.023

East Coast Lows (21/05/2009) 300 5.6 2.7 1.1 9.7 12.0 0.008

Calm Condition (11/11/2009) 500 5.4 0.9 0.6 7.9 7.2 0.008

TC Ului (20/03/2010) 300 4.4 3.0 1.4 11.0 7.6 0.015
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offshore tube to 300m are about half of what the recorded data showed. Also, it should be noted that as 
TG83 results numerically fit to the data by varying the B coefficient returns slightly better coefficient 
of determination (R2) with data and a bit less error comparing with AB07 and B98.  

In East Coast low if the offshore boundary set on 500m tube length, the results of the models 
predictions are over predicted (see Figure 8). The main reason is that the models cannot capture the 
first breaking point where was happened somewhere around 400m offshore. Accordingly, when the 
300m tube length set as the offshore boundary of the the models, i.e. Figure 9, they still cannot clearly 
capture the second breaking point; however the results are not over predicted. In both events, TG83 
showed better prediction than AB07 and B98 base on the fact that the coefficient factor B in equation 
(9) should be optimize via recorded data, however it fixed as unity in AB07 and B98. By increasing the 
value of B coefficient in the dissipation formula, literally, the ratio of the vortices area of the bore to the 
wave height increases. The B values over one conveys the fact that the ration of vortices penetrated into 
mean water level below the trough of the wave. 

Also, in second panel of Figure 9, which shows the amount of energy dissipation, the TG83 model 
shows a spike on the shoreline boundaryFigure 8. Therefore, it conveys that wave breaking occurs on 
that point which is not the case. Although the TG83 model prediction of stormy events, gives a better 
correlation with field data due to manipulating the B factor, it didn't physically picture a better result in 
comparison with B98 and AB07.   

 

 
Figure 6. Compare data series of offshore boundaries sensors (from top-left to bottom-right H1, E1-B, C1-B, 

and U1) against Rayleigh distribution. N is the total number of wave data and n represent the rank of 
corresponding wave height sorted from large to small. R2 is Coefficients of determinations between the data 

and Rayleigh distribution. 

As depicted in Figure 10 if the offshore boundary is set on 500m offshore in the calm condition 
data sets, the model results are under predicted. The main reason is that none of the models can 
accurately evaluate the shoaling which occurs about 400m offshore. Also, the value of estimated 
energy dissipation per meter square by the AB07 and B98 models at second breaking point are almost 
as half of what really happened in the field.  
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Figure 7. TC Hamish model-data comparison; Top panel is Hrms distribution, 2nd panel is distribution of 
energy dissipation per unit area and 3rd panel is the bathymetry. Circles represent data; AB07 is the blue 
line; B98 is the red dotted line and TG83 is the green dash line. 

 

 
Figure 8. ECL model-data comparison; Top panel is Hrms distribution, 2nd panel is distribution of energy 

dissipation per unit area and 3rd panel is the bathymetry. Circles represent data; AB07 is the blue line; B98 is 
the red dotted line and TG83 is the green dash line. 
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Figure 9. ECL (offshore boundary set as 300m) model-data comparison; Top panel is Hrms distribution, 2nd 
panel is distribution of energy dissipation per unit area and 3rd panel is the bathymetry. Circles represent 

data; AB07 is the blue line; B98 is the red dotted line and TG83 is the green dash line. 

 
Figure 10. Mild Condition model-data comparison; Top panel is Hrms distribution, 2nd panel is distribution of 

energy dissipation per unit area and 3rd panel is the bathymetry. Circles represent data; AB07 is the blue 
line; B98 is the red dotted line and TG83 is the green dash line. 
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Figure 14.Elevation (top) and plan (bottom) views of the experiment setup in the wave flume. The wave 
maker is located at the far end of the left side of the flume. The pressure transducer sensor spacing are 

shown in both the plan and the section views of the wave flume 

The bottom profile was surveyed by filling the flume up to 0.215m, measured at the offshore 
boundary, and then the profile was measured against the still water level at 0.1m intervals along the 
flume (see Figure 15). The survey was repeated on different days of testing in order to capture any 
changes. Also a test run was made prior to each experiment in order to find out the approximate 
breaking points. This information was used to determine the optimal position of the sensors in order to 
capture the wave breaking with more resolution. 

 
Figure 15.1:57 scale of the Gold Coast profile made in the wave flume for the experiment 

The offshore wave height recorded by the first sensor immediately after the wave maker, at a depth 
of 0.188m, was defined as the offshore boundary of the model. 36 different wave conditions were 
generated in this experiment which Hrms varies from 0.02m to 0.058m and Tp varies from 0.623s to 
4.101s, using JONSWAP spectrum with gamma equal to 3.3.  

 

Results and Discussion 

For all the test conditions the offshore surf similarity, ζo, was calculated along with R2 and ε. 
Results of model prediction against experimental data are plotted versus ζo and presented in Figure 16 
and Figure 17. according to Coastal Engineering Manual (2002) ζo

 is defined as a wave breaker type 
criteria which ζo is less than 0.5, the breaker type is spilling and for ζo greater than 0.5, the breaker type 
would be plunging. Figure 16 clearly illustrated that for ζo greater than 0.5 the amount of calculated 
error in model prediction increases. Also in Figure 17 this fact in confirmed by decreasing the amount 
of R2 for ζo greater than 0.5. Hence, based on these results, the bore dissipation theory which deployed 
in the current parametric energy dissipation models is not good enough to predict the plunging breaker 
type with high accuracy. Therefore, it is require to consider the plunging breaking dissipation in this 
type of models.  
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Figure 16. Calculated error of models prediction based on equation (14) against lab data versus ξo 
  

 
Figure 17. Calculated R2 of models prediction based on equation (14) against lab data versus ξo 

CONCLUSION 

The parametric wave models result in predicting the wave profile across the surfzone are very precise 
in the case of swells. Also, in term of choosing a proper model, AB07 and B98 have privilege to TG83 
in the cases that no data is available prior to modeling. TG83 leaves two free parameters (i.e. B and γ) 
in the model in case of calibration based on existing data. Free parameter, “B”, in TG83 model 
numerically improves the results in comparison against the field data (e.g. more than 140% 
improvement in ε in ECL). However, B can be considered as a tuning parameter in AB07 and B98 as 
well. Moreover, considering the field data comparison, models are not able to capture the sudden 
energy loss due to plunging breaker. Consequently, plunging dissipation should be considered in order 
to improve the existing parametric models. Hence, wave energy dissipation due to plunging is going to 
be considered in the next stage of this research. 
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