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- New series of experiments to evaluate the net transport rates in sheet flow

regime, (well-sorted sand bed, d500.20 mm), under accelerated skewed

waves, (Silva et al., 2010).

- Different hydraulic conditions

- Series A: regular oscillatory flows with different degrees of acceleration

skewness, ;

- Series B: acceleration-skewed oscillatory flows with a collinear net

current, opposing the wave direction;

- Series C: velocity- and acceleration- skewed oscillatory flows.

- An Acoustic Doppler Velocity Profiler (ADVP) measured simultaneously both

horizontal and vertical velocities every 3mm over a 14cm layer immediately

above the bed.
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 The model results agree fairly well with the ADVP measurements and show that the defect law reproduces typical features of the oscillatory boundary layer:

the velocity magnitude first increases with distance from the bed, with an overshoot at approximately 3 cm above the bed.

 There is a phase shift in the velocity that is maximum at about 1cm above the bed.

 Processing of the bed shear stress as well as velocities estimates within the sheet flow layer is under progress. (e.g. Ruessink et al., submitted)

- Nielsen (1992) suggested that, for turbulent flows, D1(z) requires the

knowledge of a vertical scale, z1, and a power p that fits the data :

- Eq. (2) was combined with Eq. (3) to reproduce u(z,t) inside the wave

bottom boundary layer.

This work presents a simple method based on the defect law (Nielsen,1992) to reproduce the velocity vertical profile within

the wave bottom boundary layer.
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     11u z,t D z u t   

DEFECT LAW

- the velocities u(z,t) inside the wave bottom boundary layer can be

written in terms of the free stream velocity, u (t), and a dimensionless

velocity defect function D1 (z):

- Abreu et al. (2010) showed that an arbitrary nonlinear free stream

velocity, u(t), can be represented according to 4 parameters (Uw, T, r,

ϕ):
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- An analysis of the primary harmonic of the velocity

records from ADVP pointed z18mm and p  0.75 for

all the experiments.
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C1 - Velocities through Defect law (m/s)
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B4 - Velocities through Defect law (m/s)
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B4 - ADVP Velocities (m/s)
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Arg{D1}≠ ln|D1|
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Velocity phase-lags closer to 

the bed assuming 

ln(D1(z))=Arg{D1(z)}

or ln(D1(z))  Arg{D1(z)}


