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Abstract 

In this paper, the problem of Bayesian estimation of flood quantiles is studied. 
Bayes estimators of the optimal dyke height under symmetric and asymmetric loss are 
investigated when the annual maximum sea water levels are exponentially distributed 
with unknown value of the mean. Three types of loss functions are considered: (i) linear 
loss, (ii) squared-error loss, and (iii) linex loss. In order to properly account for the 
statistical uncertainty in the mean, a modified linex loss function is to be preferred. This 
new modified linex loss function is derived from the economic dyke heigthening problem 
of Van Dantzig. Since the loss function is based on a benefit-cost analysis, its parameters 
have a clear economic significance. 

Introduction 

In statistical analysis of civil engineering data such as water levels, wave heights, 
soil parameters, etc., many attempts have been made to establish what kind of fitting 
method is preferable for the parameter estimation of a probability distribution in order to 
estimate the g-quantile, i.e. the value with a probability of exceedance equal to q (where q 
is usually very small, in the order of 10"3 to 10"5). Recent research on this subject can be 
found in, for example, Yamaguchi (1997), Fortin et al. (1997), Burcharth and Liu (1994), 
and Van Gelder (1996). The main idea in their work is to generate random samples from 
a chosen probability distribution using Monte Carlo simulation, and to investigate the 
advantage of a certain parameter estimation method over the other method which is based 
on the viewpoint of bias and variance of the g-quantile. The estimation method with the 
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smallest bias and/or variance of the g-quantile is then considered to be the best parameter 
estimation method for that particular probability distribution. In this paper, a new concept 
is presented in which the parameter estimation method is defined as such that the bias of 
the estimated #-quantile is minimised within a Bayesian framework of asymmetric loss 
functions. The use of asymmetric loss functions gives us the possibility to differentiate 
between underestimation and overestimation of the ^-quantile. In civil engineering 
applications, an underestimation error of the g-quantile generally leads to much higher 
losses than an overestimation error. 

Although Fortin, Bobee and Bernier (1997) also use asymmetric loss functions for 
comparing statistical distributions and estimation methods, they do not apply these loss 
functions in a full Bayesian framework. The parameters of the probability distributions 
have been estimated by using three well-known methods from classical statistics: the 
method of maximum likelihood, the method of moments, and the method of probability- 
weighted moments. The Bayesian point of view only comes in when Fortin et al. (1997) 
use a nonparametric Bayesian simulation methodology, called Polya resampling, instead 
of the classical bootstrap to draw observations with replacement from a reference sample. 

Three loss functions have been studied: (i) the asymmetric linear loss function, (ii) 
the asymmetric squared-error loss function, and (iii) the linex loss function. For an 
overview of asymmetric loss functions, see Zellner (1986) and Thompson and Basu 
(1996). The linex loss function has been used in real estate assessment by Varian (1974). 
Basu and Ebrahimi (1991) determine an expression for the linex estimator of the survival 
function of a system having a Type II censored exponential lifetime. Using simulated 
data, Basu and Thompson (1992) and Thompson and Basu (1993) obtain linex estimates 
of the reliability of simple stress-strength systems. Pandey et al. (1994) study the problem 
of estimating the shape parameter of a Pareto distribution using a linex loss function. 

The Bayes estimator of the <?-quantile under asymmetric loss minimises the 
expected loss with respect to the probability distribution of an unknown parameter. In 
order to find the loss function that can best be applied to decision problems in civil 
engineering, we have studied the economic dyke-height optimisation problem of Van 
Dantzig (1956). He assumed the annual maximum sea water levels to be exponentially 
distributed. It appears that Van Dantzig's economic loss function differs slightly from the 
linex loss function. This modified linex loss function seems to be a promising candidate 
for solving quantile estimation problems in other civil engineering benefit-cost analyses. 

The outline of the paper is as follows. First, an overview is given of the Bayesian 
estimation of quantiles by using the three above-mentioned loss functions. The economic 
optimisation of dyke heights is subsequently addressed. Next, we derive the relation 
between the economic optimisation and the loss function approach. This relation results 
in a modified linex loss function. The different methods are compared in a Dutch polder 
case study. Finally, conclusions are drawn. 
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Bayesian Estimation of Quantiles Using Loss Functions 

Define the random quantity X, to be the maximal sea water level in year i, 
i = \,...,n. We assume the random quantities Xv...,Xn to be mutually independent, 
identically distributed, random quantities with a cumulative distribution function 
Pr{X,. < x] = F(x I X) with parameter X, i = \,...,n. As a function of X, the g-quantile of 
the probability distribution of X is defined to be 

y„=ga) = F-'(\-q\X), 

where g\X) > 0. Suppose the parameter X is unknown with a prior probability density 
function K(X), After observing the data x = (xl,...,xn), this prior density can be updated 
to the posterior density using Bayes' theorem: 

p(X) = K{X I x) oc Z(x I. X)JZ(X) = niLi /(*,-1 X)K(X) , 

where l(x\X) is the likelihood function of the observations x when the value of X is 
given. 

For the purpose of flood prevention, we are interested in estimating the <?-quantile 
of the probability distribution of the maximal sea water level X per year, denoted by 
g(X). In a Bayesian framework, this can be achieved by minimising the loss due to the 
simple estimation error A = g(X)-g(X). Since the loss due to flooding increases with 
overestimation error (i.e. the real g-quantile is less than its estimated value: g(X) < g(X") 
or A > 0) and, at a much faster rate, with underestimation error (i.e. the real g-quantile is 
greater than its estimated value: g(X) > g(X") or A < 0), we focus on asymmetric loss 
functions (see Thompson and Basu, 1996). Beside loss functions of the simple estimation 
error, loss functions of the relative estimation error can also be considered. 

The three most well-known asymmetric loss functions are: (i) the asymmetric 
linear loss function, (ii) the asymmetric squared-error loss function, and (iii) the linex loss 
function. 

Asymmetric Linear Loss 

The asymmetric linear loss function is defined by 

r,AN     [ ak     if    A>0 or X<X", 
L(A) = { (1) 

[-bA   if   A<0 or X>X, 

where a,b>0. This loss function is asymmetric for a&b. We can best choose the 
estimate X for which the expected loss is minimal with respect to the probability 
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distribution of X: 

E(L(A)) = 

=ta[ga')-ga)]pa)dx+i;b[ga)-ga")]pa)dx= 

= ag(X)P(X)-a£g(X)p(X)dX-bg(X)[\-P(X)]+blZg(X)P(X)dX, 

where P(X) is the cumulative distribution function of X. The Bayes estimator under 
asymmetric linear loss is the solution of the equation 

dE[LlA)) = g'(A' )([a + b]P(X )-b) = 0, 
dX 

which results in X = P'1 (b/[a + b]). Hence, the Bayes estimator X equals the 
b/[a + b] -quantile of the posterior distribution of X. When a = b, the linear loss function 
is symmetric and its Bayes estimator reduces to the posterior median P~' (0.5). 

Asymmetric Squared-Error Loss 

The asymmetric squared-error loss function is defined by 

jotf    if    A.Oor^A', 

l&A2    if    A<0 or X>X, 

where a,b > 0. This loss function is asymmetric for a ^ b with expected value 

E(L(A)) = jia[g(X)-g(X)f p(X)dX + \;.b[g(X)- g(X)f p(X)dX. 

The Bayes estimator under asymmetric squared-error loss is the solution of the equation 

dE(L(A)) = 2g{X)g'{X){[a-b}P(X) + b}- 
dA 

-2g,(X){[a-b]lig(X)p(X)dX + bJZg(X)p(X)dX}=0, 

which must be solved for X numerically. When a = b, the squared-error loss function is 
symmetric and the Bayes estimator g(X) reduces to the posterior mean of g(X). 

Asymmetric Linex Loss 

The asymmetric linex loss function is defined by 
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L( A) = b[aA + exp {-aA} -1], (3) 

where a,b > 0. The expected loss can be written as 

E(L(A)) = 

=Mjifl[ga*)-ga)]pa)dA+{iexp{-«[ga*)-g(A)]}P(A)dA-i]. 

The Bayes estimator under asymmetric linex loss, X, is the solution of the equation 

^^=abgXX)[\-\:^V{-a[g{i*)-ga)\}pa)dx\=o, 
dk 

which results in 

\n(l~a>exp{ag(k)}p(X)dX) 

) 

Examples of Loss Functions 

Examples of the three loss functions are displayed in Figure 1: (i) the asymmetric 
linear loss function with o = 5.37 107 and b = 1.94 107, (ii) the asymmetric squared-error 
loss function with a= 1.07 108 and fo = 3.88 10 , and (iii) the asymmetric linex loss 
function with a = 3.03 and b = 1.32 107. The parameters a and b have been chosen as 
such that the three loss functions are equal for A = ±0.5. 

Note that both linear loss and squared-error loss are special cases of what 
Thompson and Basu (1996) called monomial-splined loss, defined, for fixed m = 1,2,3,..., 
by 

[b\A\      if    A<0, 

where a,b>0. Fortin, Bobee and Bernier (1997) applied monomial-splined loss for 
m = 1,2,3 within a framework of classical statistics. 
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Figure 1. The linear, squared-error and linex loss function according to Eqs. (1-3). 

Estimation of Optimal Dyke Height 

Let us consider the benefit-cost analysis that is adapted from Van Dantzig (1956). 
Suppose we have to decide how high the dykes should be to prevent a polder from 
flooding. Let the height of the dyke h be the decision variable, and let \ =3.25 metres 
be the initial height of the dyke at the moment the decision has to be taken. The only 
failure mechanism that we regard is overtopping, i.e. inundation of the polder will occur 
as soon as the sea water level exceeds the height of the dyke. To account for the 
stochastic nature of the sea water level, we assume the maximal sea levels per year X,, 
i = l,...,n, to be conditionally independent, exponentially distributed, random quantities 
with a known location parameter x0 = 1.96 metres and an unknown scale parameter X 
with expected value 0.33 metres. Hence, the likelihood function is 

/(xU) = n/(x,.U) = njexp^   *° 
,'=1 w A 

Accordingly, the g-quantile of the probability distribution of X is 
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yq = gW = *o -Aln(£) • 

The costs of heightening the dykes with h - h0 metres depend on the fixed cost 
cf =1.1 10s and the variable cost cv =4.0 107: i.e. cf +cv[h-h0]. If the polder is 
inundated, an economic value of c = 2.4 1010 Dutch guilders is lost. The discount factor 
is a = [1 + 0,015]"', compounded annually, where 0<a<l. Since the probability of 
inundation of the polder is exp{-(h-x0)/X}, the expected discounted costs due to 
inundation of the polder over an unbounded time-horizon can be written as 

c(X,h) = cf+cv[h-h0] + ~-csxp\-^—^-\ (4) 

if the decision-maker chooses dyke height h and when the value of X is given. 

The decision with minimal expected costs, i.e. the dyke height for which the 
expected discounted costs due to inundation are minimal, is 

L  c„  i-a 
h" =x0-lln \X--*-  (5) 

yea 

when the value of X is given. Accordingly, the inundation probability that balances the 
cost of investment optimally against the cost of inundation is 

q = exp\ 7-^ = ^ • (6) 

When the value of X is given to be 0.33 metres, the optimal inundation probability is 
g = 8.25 106. 

To account for the statistical uncertainty in the mean of the maximal sea water 
level per year, the prior density of X is assumed to be an inverted gamma distribution 
with scale parameter n > 0 and shape parameter v > 0: 

Ig(A I vtfi) = Lu7r(v)]r<v+I> expf-M/A) 

for A>0. The prior mean and variance are E(X) = jx/fy -1) and 
Var(A) = E(X)2 /(v - 2), respectively. Hence, the larger v , the less uncertain X. On the 
basis of this prior density, the expected discounted costs over an unbounded horizon 
transform into 
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j~c(X,h)p(X)X = cf +cv[h-\] + 
a 

jj, + h-x0 
(7) 

The dyke height with minimal expected costs, while taking the uncertainty in X 
into account, is 

h' = xa - n + v\x 
a 

(8) 

The inundation probability that balances the cost of investment optimally against the cost 
of inundation, while taking the uncertainty in X into account, is 

M 
H + h' - x0 v   c a 

When the expected value of X is 0.33 metres, the optimal inundation probability under 
statistical uncertainty is q'= 1.02 10"5 for v=50, g*=9.17 10"6 for v=100, and 
<?'->8.25 10_6as v->°°. 

An advantage of the inverted gamma distribution as a prior density is that the 
posterior distribution of X, when the observations x1,...,xn are given, is also an inverted 
gamma distribution with scale parameter ji + £"=1 (x. -x0) and shape parameter v + n. 
The inverted gamma distribution is said to be a conjugate family of distributions for 
observations from an exponential distribution with unknown mean (scale parameter). 
From now on, when we use the probability density function p(X), we refer to the 
posterior density. Note that (inverted) gamma priors have als been applied by Basu and 
Ebrahimi (1991), Basu and Thompson (1992), Thompson and Basu (1993), and Pandey et 
al. (1994). 

Relation Between Economic Loss and Linex Loss 

The question arises whether Van Dantzig's economic cost function and the 
Bayesian loss function are interrelated to each other. In this respect, we reformulate Van 
Dantzig's cost function in terms of Bayesian loss, i.e. we rewrite the loss function as 

L(A) = L(g(X')-g(X)) = c(X,h*+A)-c(X,h") = 

a h"-x0 = cvA + - cexp-^ —°- 
1-ot X 

expi--S-l 

There   are   now   two   possibilities   for   rewriting   the   probability   of   exceedence 
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exp{-(/i* -x0)/X}: (i) as a constant and (ii) as a function of the unknown scale 
parameter X. 

First, we investigate the probability of exceedence exp{-(/j* -x0)/X] to be a 
constant, i.e. to be q = 8.25 10"6: 

L(A) = cvA + 
a 

l^a 
cq exp-j--f-l (9) 

where A = g(X)-g(X) and g (A) = x0-A ln(g). The Bayes estimator under asymmetric 
loss in terms of Eq. (9), X, is the solution of the equation 

dE(L(A)) 

dX 

which results in 

= g\X) 
a      r l 
-a    ;A 

g(X)-g(X) 
p(X) dX = 0, 

g(X) = x0 - X \n(q) = x0-jl + vnv c     a 

c„  \-a 
•-K. 

Second, we consider the probability of exceedence exp{-(/T -x0)/X] to be a 
function of the unknown scale parameter X, by substituting the optimal dyke height h* 
according to Eq. (5): 

L(A) = c, A + X ex^-jh1 (10) 

where A = g(X)-g(X) and 

g(X) = x0-X\n\ X 
c    a 

The Bayes estimator under asymmetric loss in terms of Eq. (10), X, is the solution of the 
equation 

dX 

which results in 

dE(L(A)) ,   . 
-.  = Cvg  (A ) -jexp g(X)-g(X) 

p(X) dX = 0, 
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Q        ^ rv 

g(X) = x0-X\n\ X • — \=x0-fi- 
c     a    ' 

v   c     a 
v/i  

cv   \-a 

Modified Linex Loss 

We ought to notice that the two economic loss functions (9-10) differ slightly 
from the linex loss function (3). A difference is that both economic loss functions are not 
only a function of the simple estimation error A, but also of the relative estimation error 
A//L. In terms of X and X, the loss function (9) can be written as 

L(A) = -cv ln(<7) • (X - X) + cq 
\-a 

&xp\\n(q) 
X-X 

:L(A1;A2), (11) 

where A, = X - X is the simple estimation error of X and A2 = (X -X)/X is the relative 
estimation error of X. The general formulation of the modified linex loss function (11) 
is: 

L(AvA2) = b(aAl + <i[exp{-aA2}-l]), 

where 

a = -ln(q),    b = c,    d = q. 
\-a  c 

Since the main aim of this paper is estimating the #-quantile of a probability 
distribution, the most appropriate loss functions seem to be the economic loss functions 
(9) and (11) (in terms of g(X) and X, respectively). These economic loss functions are 
modified linex loss functions, for which the parameters have a clear economic 
significance. The parameters represent the cost of investment (dyke heightening) on the 
one hand, and the cost of flooding on the other hand. Since the modified linex loss 
functions are derived from estimating the mean of an exponential distribution, more 
research has to be undertaken to find out whether they can also be applied to estimate the 
statistical parameters of other probability distributions. 

Comparative Results 

On the basis of the dyke heightening problem, we have compared the linear, 
squared-error and linex loss function with the economic loss functions. The results are 
summarised in Tables 1-2. The coefficients a and b of the linear, squared-error and linex 
loss function have been assessed in the following way. As suggested by the economic loss 
functions (9-10), the coefficients of the linex loss function are assumed to be 
a = [E(X)]~'  and b = cvE{X). Furthermore, asymmetric linear and squared-error loss 



(5) - - 0.330 5.82 
(8) - - - 6.14 

(1) 1 1 0.326 5.77 
(2) 1 1 0.330 5.82 

(1) 5.37 107 1.94 107 0.356 6.13 
(2) 1.07 108 3.88 107 0.350 6.05 
(3) 3.03 1.32 107 0.393 6.56 
(9) - - 0.360 6.14 
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functions have been fitted to this linex loss function by, somewhat arbitrary, assuming the 
linear, squared-error and linex loss to be equal to each other for A = ±0.5 (see Figure 1). 
Results are also presented for the symmetric linear and squared-error loss function. 

Table 1: Bayes estimates of the scale parameter X and the dyke height h for v = 50. 
Estimation method for v = 50 observations       Eq.   a b X [m]   h* [m] 
Van Dantzig without uncertainty 
Van Dantzig with uncertainty 
Bayes estimate symmetric linear loss 
Bayes estimate symmetric squared-error loss 
Bayes estimate asymmetric linear loss 
Bayes estimate asymmetric squared-error loss 
Bayes estimate linex loss 
Bayes estimate modified linex loss 
Bayes estimate modified linex loss (10) - - 0.357     6.14 

Table 2: Bayes estimates of the scale parameter X and the dyke height h for v = 100. 
Estimation method for v = 100 observations     Eq.   a b X* [m]   h" [m] 
Van Dantzig without uncertainty 
Van Dantzig with uncertainty 
Bayes estimate symmetric linear loss 
Bayes estimate symmetric squared-error loss 
Bayes estimate asymmetric linear loss 
Bayes estimate asymmetric squared-error loss 
Bayes estimate linex loss 
Bayes estimate modified linex loss 
Bayes estimate modified linex loss (10) - - 0.343     5.98 

From Tables 1-2, we can conclude the following. The cost-optimal dyke height 
without taking the statistical uncertainties involved into account is, due to Eq. (5), equal 
to 5.82 m. When asymmetric loss functions are applied, the optimal dyke height is higher 
while taking the statistical uncertainty in X into account. The larger the uncertainty in the 
scale parameter X, i.e. the smaller the number of observations v, the higher the cost- 
optimal dyke height. On the other hand, a symmetric squared-error loss function results in 
the same height without uncertainty (5.82 m) and a symmetric linear loss function can 
result in even lower heights (5.77 m and 5.80 m, respectively). As expected, the optimal 
dyke height under uncertainty according to Eq. (8) equals the dyke height that follow 
from both economic loss functions (9-10). Recall that the main difference between 
Eq. (9) and Eq. (10) is that the former is regarded as a function of the optimal g-quantile, 
whereas the latter contains the substitution for q in terms of Eq. (6). Since the linex loss 

(5) - - 0.330 5.82 
(8) - - - 5.98 
(1) 1 1 0.328 5.80 
(2) 1 1 0.330 5.82 

(1) 5.37 107 1.94 107 0.349 6.05 
(2) 1.07 10s 3.88 107 0.344 5.98 
(3) 3.03 1.32 107 0.354 6.10 
(9) - - 0.345 5.98 
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function results in a dyke height much greater than the height in case of the economic loss 
functions, we recommend using the economic loss functions (modified linex loss 
functions) instead. 

Conclusions 

A Bayesian approach towards the estimation of flood quantiles has been 
suggested. Bayes estimators of the optimal dyke height under symmetric and asymmetric 
loss have been investigated when the annual maximum sea water levels are exponentially 
distributed with unknown mean. Three types of loss functions have been considered: (i) 
linear loss, (ii) squared-error loss, and (iii) linex loss. In order to properly account for the 
statistical uncertainty in the mean, a modified linex loss function can best be applied. This 
new modified linex loss function is derived from the economic dyke heigthening problem 
of Van Dantzig. The Bayes estimate of the dyke height under modified linex loss is 
equivalent to the optimal dyke height for which the economic loss is minimal. The 
modified linex loss function seems to be a promising candidate to solve quantile 
estimation problems in other civil engineering benefit-cost analyses. Moreover, unlike in 
most Bayesian literature, the parameters of the modified linex loss function have a clear 
economic significance. They represent the cost of investment (dyke heightening) on the 
one hand, and the cost of flooding on the other hand. The advantage of using a Bayesian 
loss function approach over a Van Dantzig approach is that the former approach is more 
closely related to the current design practice of hydraulic structures with fixed quantiles. 
The difference between under- and overdesign is more visible in the Bayesian loss 
function approach than in the Van Dantzig approach. The next step would be to repeat the 
type of work done in this paper on a larger scale in order to estimate the statistical 
parameters of other probability distributions. 
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