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Abstract 

Wave diffraction around a large vertical circular bottom mounted cylinder is con- 
sidered. Results from a 3D second-order numerical time domain Boundary Element 
Model, a 3D second-order semi-analytical frequency domain model and experiments 
are compared and show good agreement over a wide range of wave frequencies and 
wave steepnesses. In general the agreement between the calculated and experimental 
results is satisfactory even in some cases where second-order Stokes' wave theory is 
not a priori expected to provide accurate results. The two numerical models have thus 
been validated against each other and validated against experiments. It is noted that 
the inclusion of second-order effects is important for the accurate estimation of run-up 
on a structure. 

1   INTRODUCTION 

Wave interaction with a large cylindrical structure is considered. The Keulegan-Carpenter 
number is small and thus inertial effects are dominant. Hence, potential theory can be 
applied. Conventional methods for estimating the influence on the wave field due to the 
presence of a large structure are often based on linear wave theory. However, second-order 
effects may be important and can lead to a significant increase of e.g. the run-up on a 
structure when compared to run-up calculated using linear theory. In the present paper a 
3D time domain Boundary Element Model (BEM) correct to second order (see Biichmann 
et ah, 1998) is used for simulating the three dimensional interaction between waves and a 
structure. Comparisons are made with the run-up envelope results from the second-order 
semi-analytical frequency domain model by Kriebel (1990) as well as with experimental 
results by Kriebel (1992) for all the test cases considered by Kriebel (1992). Comparisons 
are also made to the well known first-order solution by MacCamy and Fuchs (1954) (see 
Skourup and Bingham, 1996, for further first order comparisons.) 
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2   NUMERICAL MODELS 

The BEM is formulated and implemented up to second order with the wave steepness as 
perturbation parameter. The kinematic and dynamic free surface conditions are Taylor 
expanded about the mean free surface position and perturbation expansions are applied 
to the free surface elevation and to the velocity potential there. Hence, the boundary value 
problem is formulated at each order in a time-invariant geometry. The velocity potential and 
the free surface elevation are separated into incoming (known) and scattered components, 
and the boundary value problem at each order is then solved for the scattered parts alone. 
The scattered waves are all outgoing (of the domain) and the lateral boundary conditions 
can thus be formulated as radiation conditions. In the present work the lateral boundaries 
are modeled as active wave absorbers (as known from physical wave tank facilities). These 
may be used in combination with a sponge layer on the free surface in order to ensure an 
efficient absorption over a wide range of wave frequencies. Further details about the model 
can be found in Skourup (1996) and in Buchmann et al. (1998). 

A closed-form frequency domain solution correct to second order for the diffraction of 
Stokes waves around a large vertical circular bottom mounted cylinder is given by Kriebel 
(1990). At first order the solution corresponds to the usual linear diffraction theory. At 
second order, however, the solution consists of a combination of forced waves due to the 
non-linear wave-wave interaction of the first order incident and scattered waves, and free 
waves due to the interactions of the forced waves with the cylinder. Further details about 
this semi-analytical frequency domain model can be found in Kriebel (1990, 1992). 

3   STUDY PARAMETERS 

Since both the numerical time domain model and the semi-analytical frequency domain 
model employ a Stokes' expansion method on the non-linear free surface conditions, it is 
expected that both models are limited to waves of small to medium wave steepness. Thus, it 
is appropriate to compare the wave steepness used in the experiments to the maximal wave 
steepness for the given frequency and water depth. Fenton (1990) gives a rational-function 
approximation for this maximum wave height by fitting to numerical results for progressive 
waves of maximum steepness. 

L      „_ (L\2     „_„„„ /LN3 

0.141063- + 0.0095721   -     + 0.0077829 . , 
•ffmax _  h \hj_ \h/ 

h    ~ L /L\2 (V* ' 
1 + 0.0788340- + 0.0317567 I - j   + 0.0093407 ( - 

Here H is the wave height, L is the wave length and h is the water depth. As a measure of 
the non-linearity of the wave the relative wave steepness, S, i.e. the wave steepness relative 
to the maximum steepness, can be introduced as 

S{k,H) = j^- = ^- (2) 
i^^Jmax -"max 

where k = 27r/L is the wave number. 

It is well known that a secondary crest appears in the trough of the primary wave when 
Stokes' second-order theory is used for very steep waves. This is often used as an upper 
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limit to this theory by imposing a "no secondary crest" condition. For progressive waves 
of permanent form the condition can be written as 

(T)       =777^M        >        /,(^) = 7(3coth3fc/l-coth^) (3) 
VWmax        Vv\Kn) 4 

see e.g. Svendsen and Jonsson (1980) for details. Equivalently the ratio, a21, between the 
second-order wave amplitude and the linear wave amplitude can be used to limit the theory. 
The "no secondary crest" condition then corresponds to a21 < 0.25. For progressive Stokes 
waves of permanent form a21 is 

a21 = -kH(3 coth3 kh - coth kh) (4) 

It should be noted that the second-order Stokes' progressive wave theory may show consid- 
erable error when compared to e.g. the stream function wave theory even without violating 
the limit o21 < 0.25. 

For a blunt body in waves a partially standing wave system is located in front of the struc- 
ture. Thus it may be more appropriate to use the "no secondary crest" condition for Stokes' 
second-order standing waves as an upper limit. The criterion for plane standing waves is 
somewhat more restrictive than for progressive waves, especially in deeper waters, and can 
be expressed as e.g. 

H    * l 4s) (kh) = ^ (3 coth3 kh- coth kh + 2 coth 2kh)   (5) 

where H^ is the height of the incident wave. 

It is evident that numerical models based on Stokes' theory should not be employed to 
model waves in the cnoidal wave regime. The Ursell parameter U = HL2/h3 can be 
used as an indication of the wave regime. Thus, for H/h larger than, say, 10% an Ursell 
parameter U = 40 can be used to divide the Stokes' waves regime from the cnoidal waves 
regime. 

The Keulegan-Carpenter number, KC, is an important parameter for indication of the rela- 
tive importance of viscous effects. A value of KC less than about two to three indicates that 
viscous effects are not of importance for wave-structure interaction. Using linear Stokes 
theory at the mean water level to predict the maximum horizontal velocity, umsx, KC can 
be written on the form 

Rc = "maxT = n       kH 

2o 2 ka tanhkh 

where T is the wave period and a is the radius of the cylinder. 

4   EXPERIMENTS 

Kriebel (1992) conducted a series of experiments to find the run-up around the circumfer- 
ence of a vertical circular bottom mounted cylinder in various regular wave conditions. A 
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definition sketch showing the geometry and main variables is given in Figure 1. The test 
conditions ranged from fairly low wave steepness to very steep waves where wave breaking 
around the cylinder was observed. In some cases super-critical run-up occurred in the form 
of a vertical jet on the cylinder. Since the potential theory models considered in this work 
are limited to non-breaking waves, these test cases are not considered in detail here. Also 
in the cases where breaking was observed in the experiments the agreement between the 
two second-order numerical models is good, but the results deviate significantly from the 
results found in the experiments. 

In Table 1 the parameters for the test cases considered are given. In addition to parameters 
mentioned previously, the ratio of the cylinder diameter, D, to the wave length is also given: 

D/L = kaj-K (7) 

It is noted from Table 1 that the Keulegan-Carpenter number KC is small in all the test 
cases considered. Thus, it is expected that inertial effects are predominant and potential 
theory can be applied. 

To give an overview of the range of wave conditions used, a scatter diagram of the wave 
height relative to the water depth against the wave length relative to the water depth is 
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Figure 1: Definition sketch. 
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depicted in Figure 2. It is noted that the waves are very close to breaking in a few of the 
cases. In the cases used in this work (shown with squares) the relative wave steepness, 
S, varies from 15% to 72% (see also Table 1). It is noted that the "no secondary crest" 
condition for progressive second-order Stokes waves (3) is violated in three of the test cases 
used, while in many of the cases this limit is exceeded using the standing wave criterion (5). 
Thus it is clear that in many of the test cases it would be appropriate to use a model based 
on a Stokes theory of order larger than two, or even a model based on a fully non-linear 
wave theory. Therefore, the present study also gives indications of the validity range of the 
two numerical models. 

5   RESULTS 

Using the time domain BEM the influence on the wave field due to the presence of a fixed 
structure is computed as mean values over some wave periods. The parts of the time series 
where initial conditions or reflections from the lateral boundaries can be seen are not used. 
The run-up on a bottom mounted vertical circular cylinder is calculated in this paper, but 
this specific shape of the structure is not a restriction to the BEM. The wave run-up is 

Figure ka kh kH S KC a21 D/L 
3a 0.271 0.750 0.132 0.257 1.20 0.167 0.09 
3b 0.271 0.750 0.178 0.346 1.62 0.225 0.09 
3c 0.271 0.750 0.215 0.418 1.96 0.272 0.09 
4a 0.308 0.853 0.085 0.150 0.63 0.081 0.10 
4b 0.308 0.853 0.137 0.242 1.01 0.130 0.10 
4c 0.308 0.853 0.182 0.322 1.34 0.173 0.10 
4d 0.308 0.853 0.250 0.442 1.84 0.237 0.10 
4e 0.308 0.853 0.296 0.523 2.18 0.281 0.10 
5a 0.374 1.036 0.122 0.189 0.66 0.078 0.12 
5b 0.374 1.036 0.205 0.318 1.11 0.131 0.12 
5c 0.374 1.036 0.286 0.444 1.55 0.183 0.12 
5d 0.374 1.036 0.385 0.597 2.08 0.247 0.12 
5e 0.374 1.036 0.402 0.623 2.17 0.257 0.12 
6a 0.481 1.332 0.186 0.252 0.70 0.079 0.15 
6b 0.481 1.332 0.317 0.429 1.19 0.135 0.15 
6c 0.481 1.332 0.438 0.593 1.64 0.187 0.15 

(*) 0.481 1.332 0.530 0.718 1.99 0.226 0.15 
7a 0.684 1.894 0.391 0.470 0.94 0.117 0.22 
7b 0.684 1.894 0.572 0.688 1.37 0.171 0.22 
(*) 0.631 1.745 0.683 0.838 1.64 0.204 0.22 
8 0.917 2.536 0.631 0.724 1.09 0.166 0.29 

(*) 0.917 2.536 0.806 0.925 1.40 0.212 0.29 

Table 1: Parameters for the test cases used in this work, and thus also the experiments 
conducted by Kriebel (1992). The figure numbers correspond to the figures in this work. 
An asterisk denotes an experiment where wave breaking or vertical jetting was observed. 
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computed correct to second order by first solving the linear problem and then using this 
result as input to the second-order problem. The linear results are compared with the well 
known linear diffraction theory solution by MacCamy and Fuchs (1954), while the second- 
order results are compared with the semi-analytical solution and with experimental results 
- both by Kriebel (1992). All the test cases from Kriebel (1992) have been reproduced in 
the present work and good agreement is found between the results of the two numerical 
models for all cases considered here, (see Figures 3 to 8). In the figures the BEM results 
for the linear run-up are shown with dashed lines and the second-order run-up with solid 
lines. The analytical linear run-up (i.e. the MacCamy and Fuchs solution) is shown with 
crosses and the second-order semi-analytical solution with diamonds. Experimental results 
are shown with squares. Due to symmetry only the run-up around half the circumference 
of the cylinder is depicted. 

The agreement between the two linear solutions is excellent for all cases considered. For 
the maximum run-up on the cylinder the difference between the results of the present linear 
time domain BEM and the ditto analytical solution is less than 0.5%. 

The agreement between the BEM and the semi-analytical second-order run-up by Kriebel 
(1992) is also good. It can be seen for all cases that the second-order wave run-up is sig- 
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Figure 2: Scatter diagram of the experiments by Kriebel (1992) used in this work (Q) and 
experiments with observed wave breaking or vertical jetting (*). Also shown is the highest 
wave (Fenton, 1990) (—), the limit for Stokes' second-order progressive waves (—), the 
limit for Stokes' second-order standing waves (—-), and the Ursell number t/=40 ( ). 
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nificantly larger than the linear wave run-up. For assessment of wave overtopping or deck 
slamming on gravity-based bottom mounted structures this is of significant importance. 

The experimental results by Kriebel (1992) show larger run-up both on the front and on the 
lee side of the cylinder than predicted by linear theory. Thus significant non-linear diffrac- 
tion effects are represented in the experimental data. The second-order results compare 
reasonably well with the experiments in all but the most severe cases (see Figs. 4d-e, 5d-e 
and 7b). It should be noted that in all these latter cases the "no secondary crest condition" 
for second-order standing waves (5) has been violated. 

A vertical cross-section of a wave envelope in the direction of the main wave propagation 
direction is shown in Figure 9 as an example of the good agreement between the 3D BEM 
and the semi-analytical second-order solution in the fluid domain away from the cylinder. 
The cross-section is taken along the z-axis, i.e. with y = 0 (see Fig. 1.) It is noted from 
the figure that the agreement is good even though a fairly small computational domain has 
been used for the time domain BEM. 

6 CONCLUSIONS 

A comparison has been made between the 3D second-order time domain Boundary Element 
Model by Biichmann et al. (1998) and the second-order semi-analytical frequency domain 
solution by Kriebel (1990) for calculation of run-up on a large vertical circular bottom 
mounted cylinder. Good agreement has been found between results from the two models. 

Comparison between the second-order results and the experimental results by Kriebel 
(1992) show reasonably good agreement except in cases with strongly non-linear waves. 
By comparing with solutions of the linear wave diffraction problem, it is demonstrated 
that second-order effects are important for assesment of e.g. wave overtopping or deck 
slamming on gravity based bottom mounted structures. 
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Figure 3: Run-up, R, as function of the angle, f3, around a cylinder for kh = 0.750 and 
ka = 0.271. Numerical results to first order (—) and to second order (—). Analytical 
results by MacCamy and Fuchs (1954) (+). Semi-analytical results («) and experimental 
results (Q) by Kriebel (1992). 
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ka = 0.374. Numerical results to first order (—-) and to second order (—). Analytical 
results by MacCamy and Fuchs (1954) (+). Semi-analytical results («) and experimental 
results (Q) by Kriebel (1992). 
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Figure 8: Run-up, R, as function of the angle, /?, around a cylinder for kh = 2.536 and 
ka = 0.917. Numerical results to first order (•—) and to second order (—). Analytical 
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