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Abstract 

For violent wave impacts against sea walls and breakwaters Cooker and Peregrine 
(1990,1992) suggest the use of a pressure-impulse model. Here the model is used 
for three-dimensional examples. 

1. Introduction 

When a wave is breaking or near breaking when it hits a wall then very high, 
short lived, pressures can occur. Though this peak in pressure occurs for only 
a short period of time the magnitude is often many times larger than any other 
pressures associated with the impact, and maybe enough to cause damage to a 
structure such as a sea wall or breakwater. This peak in pressure is quite difficult 
to predict because, as Bagnold noted (Bagnold, 1939), pressures for similar waves 
vary considerably, whereas pressure impulse (the integral of pressure with respect 
to time, over the duration of the impact) has less variation. 

Pressure impulse, as given in Lamb (1932) and Batchelor (1967), has been 
used to provide a theoretical model for wave impact by Cooker and Peregrine 
(1990, 1992, 1995). Chan (1994) and Losada, Martin and Medina (1995) have 
shown that this theory compares well with experiment. Pressure impulse theory 
has been further used for impacts in containers (Topliss, 1994) and impacts under 
a deck (Wood and Peregrine, 1996). A useful property of pressure-impulse theory 
is the relative insensitivity to the geometry of the problem. 
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Many theoretical and experimental studies of wave impact on a vertical wall 
are two-dimensional. However, it is clear that for a wave impacting on a structure, 
such as a breakwater, the impact is rarely two-dimensional. Nevertheless, if the 
wave crest is sufficiently wide at impact then the impact can be considered to be 
two-dimensional towards the centre of the wave. This is where the highest pres- 
sures are expected to occur. Here we present three-dimensional examples which 
can be used directly, or to judge when the two-dimensional result is adequate. 

2. Pressure impulse 

Let p be the excess pressure over atmospheric. The pressure impulse P is defined 
by 

P=[*'pdt, (1) 

where t\ and t2 are the times just before and after impact respectively. 
Choosing units made dimensionless with the water density, p, a typical impact 

velocity, U, and length scale, H, the total depth of water at impact, we follow 
Cooker and Peregrine (1990, 1992, 1995) and simplify the equation of motion to 

Tt = ~Vp' (2) 

for the short time interval, At, of the impulse, when for almost all the velocity 
field the rate of change of velocity, u, is the dominant term. Integration with 
respect to time over the duration of the impact gives: 

u2 - ui = -VP, (3) 

where u2 and U! are the velocities after and before impact respectively. Now 
we assume the water is incompressible before and after impact, and so we have 
V.u2 = V.Ui = 0. Therefore we need to solve 

V2P = 0 (4) 

in the fluid domain, subject to appropriate boundary conditions. 
The boundary conditions can be grouped into three different types: 
l)At the free surface the p = 0, so 

P = 0. (5) 

2) At points on a rigid boundary where impact occurs the velocity component 
perpendicular to the boundary is taken to be zero after impact, and some function 
of position, V, before impact. Using the normal component of equation (3) we 
find: 

dP/dn = V, (6) 

where n is in the normal direction to the surface pointing into the fluid. We often 
choose V to be uniform in space, for want of better information, as a reasonable 
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simplifying assumption. Then, choosing V to be the velocity scale U, and to be 
in the direction towards the wall, equation (6) simplifies to give: 

dP/dn=-l. (7) 

3)At points on a fixed rigid boundary where no impact occurs the velocity 
normal to the boundary is zero both before and after impact, and thus 

dP/dn = 0. (8) 

The far-field condition is that P —> 0. 
Hence, to find a pressure-impulse model for an impact problem we must solve 

Laplace's equation subject to these boundary conditions. In this paper P is non- 
dimensional, to get back to dimensional quantities simply multiply P by pUH. 
Note that since accelerations are assumed much greater than gravity, see equation 
(2), this approach only applies to violent impacts. 

3. Impact on a wall. 

Chan (1994), figure 19, examines the model from Cooker and Peregrine (1990, 
1992) and looks at plots of pressure impulse down the wall, varying the depth of 
water but keeping the impact region size constant. As the water depth becomes 
the large, there is a 'tail' to the pressure impulse distribution down the wall. 
Cooker and Peregrine (1995) gives the infinite depth solution, which when inte- 
grated gives logarithmic divergence giving a total impulse that is infinite. This 
shows that for deep water cases this model is inadequate. This emphasises the 
importance of examining three-dimensional effects. 

3.1. Three-dimensional impact on a wall. 

Consider the impact of a body of water on a patch of a wall. Cooker and Peregrine 
(1995) noted that unless the width of the impacting water is quite small the actual 
shape of the wave away from the impact region is relatively unimportant. So we 
simplify the free surface to be horizontal and let A denote the area of the patch. 
We use the boundary conditions described in section 2. On the free surface the 
usual condition of P = 0 is required. The patch is where impact takes place so 
we need dP/dy = V(x,z), with y in the direction normal to the patch and into 
the water, with x and z as shown in figure 1. On the rest of the wall no impact 
occurs so we require dP/dy = 0. Along the bottom of the region of the fluid, 
otiz = —1, we have a solid boundary so dP/dz = 0. We also need P —> 0 as 
we move far away from the impact patch. So a solution to Laplace's equation 
subject to the boundary conditions shown in figure 1 is required. 

We can solve this problem in terms of a Fourier series expansion and a Fourier 
integral. The boundary conditions on the planes z = 0 and z = — 1 enable the 
separation of the z dependence giving an expression for P: 

P{x,y,z) = Y,Pn{x,y)sin(\nz), (9) 
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0        P->0 

Figure 1: Impact on a patch of a wall. View facing wall. 

where An = (n + 1/2)TT. A Fourier transform of the problem is taken in the x 
direction. We assume that the patch is symmetric about x = 0 for simplicity. 
Hence the Fourier cosine transform is defined as: 

/oo 
Pn(x,y)cos(kx)dx. 

-OO 

The boundary condition on the impact patch becomes: 

V(x,z). 
^dPn(x,0)   . 

dy 

Multiply by sin(Ar,z) and integrate with respect to z: 

dPr{x,0) 
dy 

2 I V(x, z) sm(\rz)dz, 

(10) 

(11) 

(12) 

where the integration in z is, for a given x, over values of z on the patch. Finally 
we transform this equation in x to give: 

dPn(k,0) 
dy 

I      / V(x,z)sin(Anz) cos(kx)dzdx, (13) 

where the integration is over the patch area A. 
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The transform in x of Laplace's equation leads to: 

am 
dy2 (k2 + X2

n)Pn = 0. (14) 

To simplify the notation we use m2 = (k2 + A2,). In future expressions it must 
be remembered that m is dependent on k and n. We require P(x, y, z) —> 0 as 
y —>• oo, which means that solving equation (14) gives: 

K{k,y) = An(k)e~m\ (15) 

where An(k) are functions of k, to be found using the boundary condition at the 
wall. Then equations (13) and (15) give: 

Ai(fc) = / / V(x,z)sin(Xnz)cos(kx)dxdz. (16) 
m J J A 

The final step is to take the inverse transform of equation (15) and substitute 
into equation (9) to obtain the Fourier sum for P: 

1   f°° 
P{x, y,z)=Y/-       An(k)e-my sin(A„z) cos(kx)dk, (17) 

„  n Jo 

with An(k) given by equation (16). 
Next consider the specific case of a rectangular patch of depth d and width 

2a (symmetric about x = 0). V(x,z) = —1 on the patch. Now we can carry out 
the integration in equation (16) directly to obtain 

An{k) = -— sin(fca) [1 - cos(And)]. (18) 

Using (17), for this specific case, we obtain the Fourier sum for P 

4 
P(x, y, z) = - 53 —r~ I1 - cos(And)] I{n, x, y) sm(\nz), (19) 

where 
/•°° sin(fca) cos(A;a;)e-(A;2+A»)1/2''d/c I^y) = L kiUxiyn • C20) 

To evaluate pressure impulse for this problem the Fourier series must be trun- 
cated. For a patch of height 0.1 the difference between taking 20 and 50 terms 
is only 4% and for a patch of height 1, the difference is substantially less. The 
integration is carried out using NAG routine D01ASF, which treats the integral 
as a Fourier cosine transform. This enables us to evaluate pressure impulse for 
this problem. Of particular interest are the contours of pressure impulse on the 
wall itself, as shown in figure 2 for a patch of height 0.2 and width 2. 

The total impulse is 1.085 and 0.085 for patches of width 2 and depths 1 
and 0.2 respectively. If integration is only taken over the central width la then 
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Figure 2:  Pressure-impulse contours for impact on a patch of a wall where the 
patch covers the top 20% of the wall below the water level and is width 2. 

the corresponding values are 0.878 and 0.074. As expected the larger the area 
of impact the larger the total impulse. Figure 3 shows a plot of total impulse 
against depth of water (the total impulse has been temporarily been scaled to 
have depth of impact 1 as our length scale H, to compare with Chan (1994)), 
where the integration is over the central width of 2a, and the impact region is 
the top distance 1. We note that the total impulse seems to tend to a finite value 
instead of increasing with depth of water below the impact region, as predicted 
by the two-dimensional solution. It is more realistic that as the depth of water 
at the wall becomes very deep that the total impulse tends to a finite value. 

Figure 4 shows a comparison of the pressure impulse on the wall for the 
two-dimensional impact model and down the centre line of the three-dimensional 
'patch' model. For the comparison impact on the top 20% of the depth of water 
is used. Even when the patch width is twice the water depth at the wall the 
'patch' model shows a lower pressure impulse down the centre line than is found 
using the two-dimensional model. For narrower patches the difference is more 
significant. The difference between the pressure impulse down the centre line for 
the three-dimensional 'patch' and two-dimensional models is much larger if we 
move away from the centre line. 

Figure 5 is a plot of pressure impulse at the base of the wall under the centre 
of the patch for varying values of d (the depth of the impact patch). As expected 
increasing the depth of impact increases the pressure impulse at the base of 
the wall. Figure 6 shows a plot of P/Pm offshore on the bed along the line of 
symmetry for a comparison of the Cooker and Peregrine two-dimensional model, 
and the 'patch' model with a patch of length 0.5, 1 and 2 all for d — 0.5 and 
depth of water 1. Pm is the value of P at the middle bottom of the wall. This 
shows that once the pressure impulse has been scaled by the value at the wall all 
the curves are similar in nature. However, as expected once the patch length is 
1 or smaller there is a significant difference between the values predicted by the 
two-dimensional model and the 'patch' model. 
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Total Impulse 

Depth of water at the wall, D. 

Figure 3: Total impulse against depth of water at the wall, for three-dimensional 
impact on a patch of a wall, where the integration is over the central width of la 
[a = 1), and the impact region is the top portion of depth 1. The total impulse 
has been temporarily rescaled (for this diagram only) to have the unit length 
scale as the depth of impact, and D as the depth of water at the wall. 

0.00 0.02 0.04 0.06 0.08 0.10 0.12 

Figure 4: Pressure impulse along the centre line for the for patches of width 0.5, 
1, 2, and two dimensional model (oo) of impact on a wall, with impact on the 
top 20%. 
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P      ° 

Figure 5: Pressure impulse at the base of the wall in line with the centre of the 
patch for patches of width 0.5, 1, 2, and two-dimensional model (oo), varying the 
depth of the impact region. 

- 2D model 
patch length 2 

— patch length 1 
. patch length 0.5 

Figure 6: Plot of P/Pm offshore on the bed along the centre of the line of sym- 
metry for a comparison of the Cooker and Peregrine two-dimensional model, and 
the 'patch' model with a patch of length 0.5, 1 and 2. d = 0.5, depth of water 1. 
Pm is the value of P at the middle bottom of the wall. 
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4. Semi-infinite patch of impact. 

We need to have a clearer way of comparing the 'patch' model and the two- 
dimensional case. If the patch is sufficiently long, at or towards the centre of the 
patch the solution is the same as for the two-dimensional case. Hence, for a given 
length of patch, we need to estimate how far into the patch it is reasonable to 
assume that the solution has become two-dimensional. For a finite patch, this is 
difficult to assess as both ends of the patch have an effect on the solution. So we 
next consider a semi-infinite patch. 

Figure 7 shows the problem we need to solve for impact on a semi-infinite 
region of the wall. We again take our length scale H as the depth of water 
at the wall, and work in dimensionless quantities.   As we need to impose the 

P = 0 P = 0 

dP 
By 

By 
= 0 V2P = 0 ap 

By 

dP 
Bz 

Figure 7: Impact on a semi-infinite patch of a wall. View facing wall. 

forcing condition on the patch over a semi-infinite region we solve using a slightly 
different method to that used for the finite patch. We split the problem up into 
the two regions x < 0 and x > 0, the solutions to which we will denote as Pi 
and PT respectively. We then use continuity of P and dP/dx along the line 
x = y = 0, to find the solution. We consider first the solution in the left hand 
region. As x —> — oo the solution will tend to the two-dimensional solution for 
impact on a wall (denoted now by Pw)- If we subtract the solution, P2D, for 
the two-dimensional problem off Pt then the remaining problem whose solution 
is Pre is the same as in left hand region of figure 7 except that the condition 
over the patch is now dP/dy = 0. So Pre = P; — P2D, we solve this problem for 
Pre and then P; = PTe + P2D-  In a similar manner to the solution of the finite 
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patch model we take a Fourier transform of the problem, for Pre, but this time 
the Fourier transform is a Fourier-cosine transform in the y direction (since we'll 
need to match with the right hand side along x = 0). 

  TOO 

Pre(x,k,z) = 2 J     Pre(x,y,z)cos(ky)dy. (21) 

The solution is given by: 

fOO 

Pre = 2       Y An(k)emx sm(Xnz) cos(ky)dk, (22) 
Jo      n 

where Xn = (n + ~)n, w? = k2 + A^, and the An are obtained by the continuity 
conditions given at x = 0. 

The solution to the two-dimensional problem ( Cooker and Peregrine 1990,1992, 
rescaled to have the length scale as the depth of water at the wall) is given by 

p2D = - E y? [1 - cos(And)] sin(A^)e-A'"J, (23) 

hence 
roo 

Pi = 2       E Mk)emx sm(Xnz) cos(ky)dk 
JO n 

~ E V^ t1 - cos(\nd)\ sm{\nz)e~x»y. (24) 
n    "n 

Solution in the right hand region is similar to Pre. The conditions at z = 0, 
z = — 1 and on the wall are the same. However we require Pr to be positive, 
and to decrease to zero as x -> oo instead of being negative and increasing to 
zero as x —> —oo (as Pre). The change in sign in front of the x is to satisfy the 
conditions at x = ±oo, and the negative in front of the whole expression is to 
ensure continuity of pressure-impulse gradient at x = 0. Hence Pr is given by 
-Pre{-x, y,z): 

Pr = -2 
Jo 

roo 
/    E An.(k)e~mx sm(Xnz) cos(ky)dk, (25) 

JO        „ 

From continuity of P at x — 0 we find that: 

nh[1~C°S{Xnd)]^Xn 
Mk) = rv~2 [1 ~ cos(A„d)] -pr-^ k + 0 

4,(0) = -^^ [1 - cos(A„rf)] k = 0. (26) 
27rA„ 

Integration is carried out in a similar manner to that used in the evaluation 
of the pressure impulse for the finite patch impact. Hence P is given by equation 
(24) for x < 0 and equation (25) for x > 0, with An given in equation (26). 
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(a) 

(b)    „.„ 

Figure 8: (a) Pressure-impulse contours, for the semi-infinite patch, on the wall 
for a patch of depth 0.3. (b) Pressure-impulse contours, for the semi-infinite 
patch, on the bed in front of the wall for a patch of depth 0.3. 
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Figures 8 (a) and (b) show pressure impulse contours, for the semi-infinite patch, 
on the wall and base respectively for a patch of depth 0.3. 

When the patch is of depth 0.3 the values calculated by the two-dimensional 
model only approximate the three-dimensional values well at a distance into the 
patch of two times the depth of the water i.e. the width of influence of the 
boundary conditions outside of the patch is twice the depth of the water. Figure 
9 is a plot of P along the bottom of the wall for different depths of patch (scaled 
by the two-dimensional model value). If we examine this then we can see that the 
depth of impact has little effect on the influence distance of the three-dimensional 
boundary into the patch. If we look at a distance of 0.5 into the patch (along the 
bottom of the wall), we can see that the pressure impulse is only approximately 
0.775 and 0.850 of the two-dimensional value for patches of depth 0.2 and 1.0 
respectively. 

P/(2-dim  P) along the bottom of wall 

Figure 9: P/(2D value) for the semi-infinite patch as a function of position along 
the base of the wall, for d = 0.2, 0.4,0.6,0.8,1.0 (from left to right in the top half 
of the graph). 

This semi-infinite solution can be used to give an alternative derivation of the 
rectangular patch case, namely: 

a        n i        a        \      r, /        a        \ x>~,     Pr(x~ ~,y,z)- Pr(x + -,y,z) 

< x < -,     P,(x - -,y,z) -Pr(x + -,y,z) 
2' 

£<-o>     Pi{x~ ^,y,z)-Pi{x + 7-,y,z) 

(27) 

(28) 

(29) 

(30) 
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5. Conclusions 

The Cooker and Peregrine (1990,1992) pressure-impulse model for impact on a 
plane vertical wall has been used for three-dimensional examples. The extension 
of this work to the impact on a semi-infinite patch of wall allowed conclusions to 
be drawn as to what distance into the patch we could assume two-dimensionality. 
The length of influence was found to be about twice that of the height of the wall. 
Interestingly, this distance of influence is little affected by the percentage of the 
water depth involved in impact. We conclude that if the wave impact width is 
greater than four times the height of the wall, then a two-dimensional model can 
be used to predict peak pressure impulse. However for waves with crest width 
less than twice the water depth three-dimensional effects play a significant role 
and should be included. 

It is thought that comparison with experiment would lead to greater under- 
standing of three-dimensional effects. However, the difficulties associated with 
estimating the width of the wave crest at impact from experiment means that as 
yet this has not been possible. 
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