
Data Assimilation and Nested Hydrodynamic 
Modelling in Storm Surge Forecasting 

Abstract 

A data assimilation method for state updating in a hydrodynamic model is 
presented. The method is based on the extended Kalman filter in which the error 
covariance matrix is approximated by a matrix of lower rank using a square-root 
factorisation (reduced rank square-root filter). Results from a test of the Kalman filter 
in a regional model of the North Sea and Baltic Sea are presented. In this respect, the 
influence of using nested hydrodynamic models together with data assimilation 
techniques is illustrated and discussed. The test reveals that assimilation of water 
level measurements from coastal stations significantly improves the model results. 

Introduction 

During the last decades, the interest of predicting water level rising as a 
consequence of storm surges has grown considerably. In countries that are affected by 
this phenomenon substantial efforts are made to predict storm surges so far ahead in 
time that appropriate actions can be taken. 

The combination of numerical weather prediction models and hydrodynamic 
models forms the main frame of an operational storm surge forecast system (Bode and 
Hardy, 1997). The hydrodynamic model uses the predicted meteorological wind and 
pressure data to provide a prediction of the water level field. The storm surge 
prediction, however, is not always as accurate as desired which can mainly be 
ascribed to 

1. Simplifications of the description of the physical processes in the numerical 
hydrodynamic model. 

2. Bias in the meteorological forcing prediction. 
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3.   Inaccurate open boundary conditions. 

The main errors in the hydrodynamic model are, respectively, simplifications 
of the physical processes in the numerical model equations and application of a too 
coarse spatial resolution to adequately resolve the dynamics of the system. To reduce 
the errors caused by the former problem more complex models should be considered, 
whereas for the latter problem the model has to be applied in a finer grid which can be 
defined locally by using nested hydrodynamic models (Vested et al, 1995). Nested 
models allow to have a finer resolution in areas where required while a coarser 
resolution can be maintained in the rest of the model domain. 

The uncertainties of the meteorological forcing and the open boundary 
conditions as well as uncertainties of the physical model parameters can be accounted 
for by using data assimilation. In data assimilation, model and measurements of the 
system are combined in order to obtain a better estimate of the state of the system. 
Data assimilation algorithms, however, can become prohibitive when applied in large 
scale models due to the huge computational cost associated with this kind of 
applications. New algorithms, such as the reduced rank square-root (RRSQRT) 
Kalman filter (Verlaan and Heemink, 1995) have solved this problem. The RRSQRT 
filter is a suboptimal scheme of the extended Kalman filter that uses a square-root 
algorithm as well as a lower rank approximation of the error covariance matrix. 

The RRSQRT filter has been integrated into an existing hydrodynamic 
modelling system that solves the vertically integrated equations of continuity and 
momentum in two horizontal directions (Canizares et al, 1998). When measurements 
are available, the Kalman filter is adopted for updating the state of the system. In 
storm surge forecasting, the updated state is then used as initial conditions for the 
forecast simulation. 

The paper is organised as follows. In the first section the applied numerical 
hydrodynamic model is described. In sections two and three the general Kalman filter 
updating scheme and the RRSQRT filter are presented and the implementation in the 
hydrodynamic model is described. Sections four and five outline the specific features 
of the nested version of the hydrodynamic model and the implementation of the filter 
in this type of model. Finally, a test case is presented where the Kalman filter is 
applied in a regional model of the North Sea and Baltic Sea. 

The deterministic numerical model 

In the present study, the data assimilation method has been implemented in the 
hydrodynamic module of the MIKE 21 modelling system which solves the vertically 
integrated equations of continuity and conservation of momentum (shallow water 
equations) in two horizontal directions (DHI, 1995). The equations that are solved are 
those of: 
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Horizontal coordinates [m]. 
Time [s]. 
Water depth [m]. 
Surface elevation [m]. 
Flux densities in x andy directions [m3/s/m]. (p,q) = (vxh,vyh) where vx 

and.Vj, are the depth averaged* andy velocities [m/s]. 
Source magnitude per unit horizontal area [m/s]. 
Source impulse in x and y directions [m2/s ]. 
Evaporation rate [m/s]. 
Eddy viscosity coefficient [m /s] 
Acceleration due to gravity [m/s2]. 
Chezy bed resistance coefficient [rn^/s]. 
Coriolis parameter [s"1]. 
Wind friction factor [-]. 
Wind speed and wind speed components in x andy directions [m/s]. 
Atmospheric pressure [kg/m/s ]. 
Density of water [kg/m3]. 
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At closed boundaries the flow perpendicular to the boundary is set to zero. At 
open boundaries the surface elevation is prescribed. With these boundary conditions 
and with prescribed initial values of surface elevations and flux densities, (l)-(3) form 
a well-posed boundary value problem. 

MIKE 21 uses a finite difference approximation to solve the partial differential 
equations where the variables are defined on a space-staggered rectangular grid with 
surface elevations at grid points and fluxes midway between grid points (Leendertse, 
1964). A time-centered alternating direction implicit (ADI) scheme is adopted. The 
equations are solved in one-dimensional sweeps, alternating between x and y 
directions. In the x-sweep, the continuity equation and the momentum equation in the 
x direction are solved with respect to S, at time step k+l/2 andp at time step k+\ using 
the known variables £*, Ph qk-m, and qk+m- In the y-sweep, the continuity equation 
and the momentum equation in the y direction are solved with respect to §t+i and qk+312 
using 4+1/2, qic+i/2,Pk, andpk+\. 

Implementation of the Kalman filter in MIKE 21 

For implementation of the Kalman filter in MIKE 21, the numerical model has 
to be formulated in a state-space form. The state variables to be considered are surface 
elevations and depth averaged x and y velocities in every point of the horizontal grid. 
The Kalman filter algorithm is based on a recursive two-time step formulation. The 
numerical scheme in MIKE 21, however, involves they velocity at three time steps. 
To express this scheme using only two time steps, the y velocity at time steps £+1/2 
and £-1/2 are included in the state vector. The numerical scheme based on (l)-(3) can 
then be written 

**= *(**-!,"*) • (4) 

where xk = (gk, vxk, y^+ia, v^k-ui) is the state vector, and uk is the forcing of the 
system in terms of the surface elevations at open boundaries and the meteorological 
forcing components in the momentum equations (wind stress and pressure gradient). 

For modelling the uncertainty of the system, it is assumed that model errors 
are mainly related to errors in the forcing components. The error processes are 
assumed to be less spatially variable than the water flow process (Heemink, 1990), 
and the discrete error processes can thus be defined on a grid G2 that is coarser than 
the model grid Gl. A stochastic representation of the system equation (4) can then be 
written 

Xk=®(xk^,uk+K£k) (5) 

where Sk contains the model error in every grid point of G2, and A is a matrix that 
represents the sequence of linear interpolations between G2 and Gl. 
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For the system, measurements z* of the state are assumed to be available at 
certain points in the model grid Gl. The stochastic representation of the measurement 
equation reads 

Z* = CkXk + % (6) 

where Q is a matrix that describes the relation between measurements and state 
variables, and % is a random measurement error with zero mean and known 
covariance matrix Rk- 

When measurements are available, cf. (6), the model forecast and the 
measurements can be combined to obtain an updated estimate of the state of the 
system. The Kalman filter update of the state vector and the error covariance matrix 
Pk is given by 

xl=x[+Kk{zk~Ckx{) (7) 

Pk" = Pk
f-KkCkPk

f (8) 

where Kk is the Kalman gain matrix 

Kk=Pt'Cl[CtPi'Cl-RkY (9) 

which serves as a weighting function of model forecast and measurements and 
depends on the associated errors P/ and Rk In (7)-(9) superscripts / and a refer to, 
respectively, forecast and analysis (or update). 

For large systems, the propagation of the error covariance matrix (deter- 
mination of Pk) is the main bottleneck. This step requires 2« as much computing 
effort as is required to advance the deterministic model itself (n being the dimension 
of the state vector). Applications to large systems are prohibitive under such 
conditions, and hence approximations of the Kalman filter, reducing the 
computational effort, have to be used. The technique described below, the reduced 
rank square-root filter, introduced in (Verlaan and Heemink, 1995) and (Verlaan, 
1998), is based on an approximation of the error covariance matrix. 

The Reduced Rank SOuare RooT (RRSORT) filter 

For non-linear model dynamics an extended Kalman filter can be formulated 
in which the propagation of the error covariance matrix is based on a statistical 
linearisation of the model equation. Considering a white noise process for the model 
errors, the forecast step is given by 
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where Qu is the covariance matrix of the system noise, defined on grid G2. 

The RRSQRT approximation of the extended Kalman filter uses a square-root 
algorithm as well as a lower rank approximation of the error covariance matrix 
(Verlaan and Heemink, 1995). Denote by S the approximation of rank M of the square 
root of the error covariance matrix. The propagation of the error covariance matrix is 
then given by 

s/=[FA°_,|GtAer] (12) 

where Q]
k
12 is the square-root of Qk- The matrix Sk_, has M columns where M is 

chosen much smaller than the dimension n of the state vector. To calculate the 
derivatives in Ft and Gk a finite difference approximation of <!>(•) is adopted. Thus, 
the propagation of the error covariance matrix requires M plus p (the total number of 
noise points) model integrations, which is much smaller than the 2n integrations 
required in (11). 

The propagation step in (12) increases the number of columns in the error 
covariance matrix from M to M + p. To reduce the number of columns, and hence 
keep the rank of the matrix constant throughout the simulation, a lower rank 
approximation of S( in (12) is applied by keeping only the M leading eigenvectors of 
the error covariance matrix. The reduction can be achieved either by a singular value 
decomposition of S[ or by an eigenvalue decomposition of the matrix (S[)' Sk 

(Canizares et al., 

For uncorrelated measurement errors, a sequential updating scheme can be 
applied (Maybeck, 1979). This algorithm avoids the expensive calculation and storage 
of P/ as well as the matrix inversion in (9) for the calculation of the Kalman gain. 
The procedure used in the present study follows (Potter, 1967), i.e. 

"t,,=kYcf (13) 

7kJ = WA'akj+al (14) 
Kk,,=S"k,,^akjrkJ (15) 
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SI = 5tV, - KkJal r=r, S'tfi = S/ (16) 
1 + V^.'cr*,« 

*•*,/ ~ x/U-i "l"-^i,iLzt,(     ^/xt,/-ij>   •*•*,(> —-*•* (17) 

where C, is the /'* column of matrix C, z*,, is the i'h measurement, and a-, is the 
standard deviation of the measurement noise. 

The filter can use time-coloured noise. In this case the state vector is 
augmented with variables that represent the estimated value of the noise. For the 
propagation of the state vector and the error covariance matrix new equations have to 
be defined for the RRSQRT filter (see Madsen and Canizares, 1998). Moreover, the 
error covariance matrix has to be normalised prior to the eigenvalue decomposition. 
For further details on the RRSQRT algorithm see (Canizares, 1998). 

Special features of the MIKE 21 nested model 

The nested version of the MIKE 21 model solves the hydrodynamic equations 
simultaneously in a number of dynamically nested grids. An important difference 
between nesting and boundary transfer from a coarse model to a finer one is that in 
nesting the information between grids travel in two directions, i.e. from the coarse to 
the fine grid and vice versa. On the other hand, in a boundary transfer model 
information travel only from the coarse to the fine grid. The two techniques are also 
denoted two-way and one-way nesting, respectively. 

In order to ensure model stability and smooth transition between areas, certain 
constraints are imposed. The most important are: 

• Open boundaries can only be defined in the coarsest grid. 
• The spatial resolution from one level to another is reduced by a fixed factor (grid 

reduction factor), which is equal to 3. 
• The water depths in common grid points along the internal boundaries must be 

equal in both the coarse and the fine grid. Between the common points along the 
internal boundary, the water depths in the fine grid are linearly interpolated using 
the values at the common points. 

• The water depth in the coarse grid has to be identical in three points orthogonal to 
the internal boundary (at the border and one point at each side). Therefore the first 
four points orthogonal to the internal boundary in the fine grid have the same 
water depth. The intention of these corrections is to avoid instabilities in the 
internal boundaries. 

Further details about the nested model can be found in (DHI, 1995). 
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Implementation of the RRSQRT filter in the nested model 

The main features of the implementation of the RRSQRT filter in the nested 
model are: 

• The model is propagated using the complete nested model. 
• The error covariance matrix is represented in the coarsest grid (the main area). 

Hence, the number of variables considered in this matrix is the same as if only the 
coarsest grid is considered. 

• The error covariance matrix is propagated using the complete nested model. The 
model error is interpolated from the main grid to the internal grids. 

• If the measurement position is located in a grid point of an internal area, the value 
is extrapolated to the main area. Thus, vector C, represents the relation between 
the position of the measurement in the fine grid and the surrounding positions in 
the coarsest grid. 

• The Kalman gains Kt correspond to variables in the main area. The gains are 
interpolated from the main grid to the internal grids. 

Under these assumptions, the associated cost of the data assimilation scheme in 
the nested model is comparable to application in the model defined in the coarse area. 
The main difference is that the time associated with a run of the nested model is larger 
than for the model defined in the coarse area. For further details on the application of 
the RRSQRT in the nested hydrodynamic model see (Canizares, 1998). 

Application: a regional model of the North Sea and Baltic Sea 

The Kalman filter has been applied to a regional model covering the North Sea 
and the Baltic Sea. Two open boundaries are defined in the North Sea between, 
respectively, Stavanger and Orkney Island (northern boundary) and Dover and Calais 
(southern boundary). A coarse model is defined with a grid size of 9 nautical miles 
(16670 m) in both directions. A nested area of the inner Danish waters has been 
defined in order to obtain a better and more detailed description of the water level and 
current fields in this area. The local model is defined in a grid with origin in (48,18) 
of the coarse grid and a grid size of 3 nautical miles (5667 m), i.e. one third of the grid 
size of the coarse model. The model setup and bathymetry are shown in Figure 1. 

At the two open boundaries, the water level is specified. For the simulation 
period, wind velocity fields and pressure fields are available every three hours and 
they are linearly interpolated at every model time step (set equal to 10 min.). The flow 
resistance is defined with a Manning number equal to 32 ml/3/s in the entire model 
domain. The model is initialised on 01/10/97 at 00:00 with water level and velocity 
fields obtained from a spin-up simulation of 48 hours. 

The performance of the RRSQRT filter in both the standard hydrodynamic 
model (HD) and the nested hydrodynamic model (NHD) is tested. In the simulations, 
water level data from 14 coastal stations are assimilated and the results are validated 
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against data from another 7 available coastal stations. The positions of the, in total, 21 
stations are shown in Figure 1. 

(Crklspacrq 1.667B+<W m) 

Figure 1. North Sea and Baltic Sea model model setup and bathymetry (depth in 
meters). A nested area is defined for the inner Danish waters. Water level stations are 
represented with circles (measurement stations) and squares (validation stations). 

A simulation period of three days from 01/10/97 00:00 to 03/10/97 00:00 was 
applied where continuos measurement of water levels were available at the 21 
stations. Based on an initial sensitivity test the following parameters for the Kalman 
were used: 

The rank of the error covariance matrix is set equal to 100. 
The grid reduction factor between the noise grid and the coarse model grid is set 
equal to 8. 
Time-coloured noise is defined using a first order autoregressive model with a lag- 
one autocorrelation coefficient of 0.97. 
The noise in the meteorological forcing components of the momentum equation is 
defined using an exponential spatial correlation model with a correlation 
coefficient of 0.9 and a standard deviation that varies in space. The magnitude of 
the standard deviation varies from 0.0005 m2/s2 in the North Sea to 0.0001 m2/s2 

in the Baltic Sea. 
At the northern boundary noise is defined using a spatial correlation coefficient of 
0.95, standard deviation of 0.1 m, and a grid reduction factor of 3. At the southern 
boundary the same parameters are used except for the grid reduction factor, which 
is set to 1, i.e. it coincides with the model grid. 
The standard deviation of the measurement noise is set equal to 0.05 m. 
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Measurements were available every 20 minutes, and hence the updating step 
of the RRSQRT filter takes place every second time step. 

In order to evaluate the performance of the filter the root mean square error 
(RMSE) between the observed and updated water levels are calculated and compared 
with the RMSE of the deterministic model simulation for both models. The RMSE 
has been calculated using the last 36 hours of simulation in order to reduce the 
influence from the initialisation of the filter. Figures 2 and 3 present the RMSE for the 
measurement and the validation stations, respectively, obtained from the deterministic 
and the updated HD and NHD models. Table 1 shows the global (spatial average) 
values of the RMSE for the different models. 

Comparison DA ( HD vs NHD). Measurement Stations 

QKF   HO 

• Dei NHD 

in> m- 

Figure 2. RMSE for the deterministic (Det) and the updated (KF) hydrodynamic (HD) 
and nested hydrodynamic (NHD) models at measurement stations. 

Comparison DA ( HD vs NHD). Validation Stations 

0 4   - 

• Det HD 

QKF HD 

• Det NHD 

• KF NHD 
0 2  • 

0 1   - 

0  • 

4 #1! 
Statlom 

II •-H • 

il ti tntit 
Figure 3. RMSE for the deterministic (Det) and the updated (KF) hydrodynamic (HD) 
and nested hydrodynamic (NHD) models at validation stations. 
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Table 1. Global (spatial average) RMSE values for the deterministic and the updated 
hydrodynamic (HD) and nested hydrodynamic (NHD) models. 

Deterministic 
RMSE (m) 

HD 

Kalman filter 
RMSE (m) 

HD 

Deterministic 
RMSE (m) 

NHD 

Kalman filter 
RMSE (m) 

NHD 
Measurement 

stations 
0.218 0.072 0.216 0.077 

Validation 
stations 

0.240 0.126 0.240 0.127 

fGri*DO£inQ  1.6S7e4O04 rn) 

Su-foce Etovotlw 

Bi:- 

Surface Bevatfcn 

Figure 4. Water level and velocity field for the inner Danish waters at 02/10/97 19:00 
calculated from the deterministic model (top) and the Kalman filter (bottom) using the 
hydrodynamic model (HD). 
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The HD and NHD deterministic models yield basically the same results. The 
use of a detailed description in the inner Danish waters improves the simulation only 
in some of the stations while providing worse results in others. This is a direct 
consequence of a poor schematisation of the area between Denmark and Sweden in 
the finer grid, resulting in worse results at the stations located at the southern part of 
the fine grid (Gedser and Klagshamn). The simulation at the other stations located in 
the nested area is improved using the finer resolution. No further efforts for 
calibrating the models have been done. 

The Kalman filter for the HD as well as for the NHD model efficiently 
corrects the water levels in all parts of the regional model. At measurement points a 
global value of the RMSE equal to 0.072 m for the HD and 0.077 for the NHD have 
been obtained which is only slightly higher than the assumed standard deviation of the 
measurement noise (0.05 m). At validation points the corrections are not that 
significant but they still present a marked improvement (about 50% reduction of the 
RMSE) in all regions when compared with the deterministic models. In general, the 
results obtained in this case, in terms of reducing errors in water levels, are not 
improved by using a finer grid. Since the state vector is defined in the coarse grid, 
corrections in the fine area are obtained by interpolating the error estimated by the 
filter in the coarse area. The introduction of this new approximation causes a slightly 
worse performance of the filter in the finer grid. The use of a finer resolution is more 
important for corrections of the velocity field as illustrated below. 

1997/10/02 laoaoo 
0 5 10        15 

1997/10/02 19.00.00 

Strlixt Ele-atio* 

35        40        45        50      54 

Figure 5. Water level and velocity field for the detailed area of the inner Danish 
waters at 02/10/97 19:00 calculated from the deterministic model (left) and the 
Kalman filter (right) using the nested hydrodynamic model (NHD). 
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Water level and velocity fields for the deterministic and updated models at 
02/10/1997 19:00 are presented in Figures 4-5. Important differences in the velocity 
field can be observed in these figures. The flux entering the Danish waters from the 
North Sea is not well represented in the deterministic solution. The updated model 
provides higher water levels in the entrance to the Baltic Sea than in the deterministic 
model. In general, the updated model is able to reproduce the high water level 
elevation in the inner Danish waters and the northern coasts of Germany and Poland. 
When using a finer resolution, the velocity field is better represented. In this case, 
larger currents are obtained in the updated model, especially in areas with strong 
water level gradients. The type of global improvements presented in Figures 4-5 is 
maintained during the entire simulation. 

Conclusions 

A data assimilation method based on the RRSQRT filter has been 
implemented in a hydrodynamic model that solves the shallow water equations 
simultaneously in a number of dynamically nested areas with different resolutions. 
The use of a finer resolution grid in some areas of the model rapidly increases the 
number of computational points in the model. The state vector has been defined on 
the main (coarsest) grid in order to reduce the computational cost and the storage 
requirements of the Kalman filter. This implementation, however, did not improve the 
corrections of water levels in the detailed area as compared with the corrections 
obtained using only one area with a coarse resolution. Although this result may be 
partly caused by a poor schematisation of the nested model, more accurate results are 
expected if variables in all points of the nested grids are defined in the state vector, 
and hence avoiding the interpolation of the Kalman gain from the coarse to the fine 
grid. 

The application example reveals that the use of data assimilation significantly 
improves the global model results. In storm surge forecasting, the improved estimate 
of the state of the system is then used as initial conditions for the forecast simulation. 
In the cases where the main interest is on water level predictions, as in the case in 
storm surge forecasting, the implementation using only one area of the regional model 
with a coarse resolution can provide sufficient accuracy. On the other hand, for 
prediction of currents more detailed information is required, and in this case nested 
modelling combined with data assimilation should be applied. 
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