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Abstract 

Field measurements of long-period wave have been preformed for the 
Gamcheon Harbor in Korea. A Galerkin finite element model based on the 
extended mild-slope equation has been developed for simulating harbor oscillation 
more accurately. Infinite and joint elements are introduced to accomodate 
radiation condition at infinity and matching conditions at harbor mouth for the 
consideration of the energy loss due to flow separation, respectively. Comparisons 
with the results obtained by hydraulic experiments by Lepelletier (1980) show that 
the present model gives fairly good results. Model results reveal that the influence 
of entrance loss at the harbor mouth is considerably significant. From the 
application to the Gamcheon Harbor it is seen that the computed resonant 
periods and amplification ratios well agree with the measured results. The 
entrance loss effects were found to be insignificant unless the incident wave 
height is large. 

Introduction 

Long-period harbor oscillations could create unacceptable vessel movements 
leading to the downtime of moored ships. It is practically very difficult to 
prevent long-period harbor oscillations, but extension of breakwaters at the harbor 
mouth could be a countermeasure in part. Narrowing a harbor mouth might give 
rise to increase in the energy loss due to flow separation near the mouth, which 
in turn makes resonant periods of the harbor become longer, especially for the 
Helmholtz resonant mode. Referring to Lepelletier (1980), the reduction of a 
harbor mouth can reduce the amplification ratios of Helmholtz mode considerably. 
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This study includes field measurements for short- and long-period waves 
around the Gamcheon Harbor in Korea, and the development of a finite element 
model based on the extended mild-slope equation, which incorporates the bottom 
frictional dissipation and the entrance loss due to flow separation. The present 
model can also handle the harbor resonance problems in a harbor with 
non-straight coastlines. The model is verified through the comparisons with 
Lepelletier (1980)'s experimental results. Finally, the model is applied to the 
Gamcheon Harbor with narrow mouth and compared with field measurements. 

Field Measurement 

Field measurements for short- and long-period waves have been performed 
around Gamcheon Harbor which is located at the east-southern coast of Korea. 
The harbor is 4,000 m long, 1,150 m wide and has entrance of 240 m wide. In 
spite of narrow mouth, this commercial harbor is suffering from severe downtime 
problems in summer season. The measurement period was from November 27 to 
December 13 in 1997. Four pressure-type wave gauges (PWG), and one Aanderaa 
RCM-9 current meter were deployed at locations shown in Figure 1. Sampling 
intervals for the pressures at Sts. PI and P4 were set to 5 seconds, while 
pressure data at Sts. P2 and P3 were gathered in the interval of 1 second. 
Current velocities from RCM-9 were averaged over 1 minute. 

Figure 1. Location Map of Field Measurements. 
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After filtering tidal components from pressure signals using a Butterworth 
high-pass filter in MATLAB, spectral analyses of the 16 sets of filtered pressure 
data were performed. Figure 3 shows the power spectral densities of long-period 
wave data set no. 6 obtained at the four stations. We can find the first and 
second resonant modes appear near 2,000 seconds and 600—700 seconds, 
respectively. It is noted that the period of Helmholtz resonant mode of 
Gamcheon Harbor is 27.0~33.3 minutes, and the second and third resonant 
periods appear at 9.4 — 12.1 and 5.2~6.2 minutes, respectively. Figure 3 shows 
the power spectral densities of current velocity normal to the harbor mouth. It is 
noted that the maximum value appears around 28.2 — 31.9 minutes corresponding 
to the Helmholz mode. 

1E+1   -s: 

"" 1E+0 

£• 1E-1 

1E-4 

No. 6 (Dec. 2 13:00, 1997) 

     St. P1 

    St. P2 

i  i i i i n -i—i—i—rr 
100 1000 

Wave period (s) 

Figure 2. Power Spectral Densities Obtained at Sts. PI—P4. 

1000 

Wave period (s) 

Figure 3. Power Spetral Densities for Observed Velocity at St. C. 
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Galerkin Finite Element Model 

Theoretical Formulation 

A Cartesian coordinate system (x, y) and a cylindrical coordinate system 
( r, 6) are employed for mathematical formulation. The domain in the model is 
divided into two regions as shown in Figure 4. One is a near field region (i2x) 

that is modeled as conventional finite elements and the other is a far field region 
(i32) that is represented as infinite elements of which shape functions satisfy the 

radiation condition at infinity. In the far field region, the water depth is assumed 
to be constant in the radial direction, but the depth in the circumferential direction 
varies with the value of the interface between the far and near field regions, JT/. 

To take into account the entrance loss at the narrow harbor mouth, the near field 
region is again divided into two sub-regions, that is inner (i21;) and outer regions 

( Qi0) of the harbor (see Figure 4). 

Incident wave 

Figure 4. Definition Sketch for Boundary Value Problem. 
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The monochromatic and simple time harmonic waves propagating over a 
steeply sloped sea bed with variable depths in both regions may be described as 
follows (Massel, 1993; Suh et al., 1997). 

v • (CCgv<t>,) + ^-w2^- w2{Rl(vh)2 + R2v
2k}<t>i = 0 (1) 

in which v = (d/dx)i+ (d/9y)j, i and j are unit vectors in the directions of 
x and y, respectively, 4>i is the two-dimensional spatial complex valued 

velocity potential, the subscript i denotes the near field region for i = 1 and 
the far field region for i = 2, co is the angular frequency, h(x, y) is the 
water   depth,    Rx    and    R2   are   coefficients   for   second-order   bottom   effects 

corresponding  to  the  squared  bottom  slope    (v/z)2   and  the  bottom  curvature 

V2h (see  Suh  et al.,   1997).  Wave  celerity,    C  and  group  velocity,    Cg   are 
given as 

C= \jj;tcmhkh (2) 

C, 2 V^   sinh2M/ w 

in which   k is the wave number. 

To consider the effects of wave absorbing, the partial reflection boundary 
condition is introduced along the solid boundaries, which was proposed by Mei 
and Chen(1975) as a function of an empirical reflection coefficient, Kr normal 
to the solid boundaries. This boundary condition is represented as 

-^ = ah on  A (4a) dn 

= a{<j>2+4>^     on  r2 (4b) d(*2 + 4i) 
dn 

in which 4>\ is the total velocity potential in the near field region, <f>2 is the 

scattered wave potential in the far field region, <j)l is the incident wave 

potential,   n is outward normal to the solid boundary, and   a is expressed as 

a =   ikcosd, i + % (5) 

in which   0l is the angle of the incident wave normal to the solid boundary. 
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The matching boundary condition on   .T7  can be expressed as 

01   =    02 + 0/ (6a) 

d<t>l      = 3(02+ <t>l) ^x 
dn dn 

The   scattered   wave   potential,    (/>2   in   the   far   field   region   must   satisfy   the 

Sommerfeld radiation condition at infinity. 

lim\^(^7 -Mi) =   0 (7) 

The incident wave potential is given as 

ikrcos(8— 9i) ,-Q\ 

in which a0 is the amplitude of incident wave and 6t is the attack angle of 
incident wave. 

Two matching conditions were introduced on the interface boundary of two 
sub-regions, i.e., velocity and pressure continuity conditions at the harbor mouth 
(Unluata and Mei, 1975). For the entrance loss effects, the following matching 
conditions are introduced. 

Uj =   u0 (9) 

Pi Po      ,      1     fe ,,,      h      3U0 —   =   — + TJ- — u0\u0\ + -1- -jr (10) 

where, u is the flow velocity, p is the pressure, the subscript i denotes the 
inner region and o denotes the outer region, p is the fluid density, fe is the 

loss coefficient and /, is the jet length. The quadratic non-linear energy loss 
term was linearized by using Lorentz transformation and equating depth averaged 
power, that is, 

y -f u0\u„\   =   y a u0 (11) 

where, the linearized loss coefficient   a is given by 

„ —     8   Ar t„„u u    5 + cosh2^fe n 0x 
a ~  "9^ g  u° tanhM   2Afc+sinh2Afc (12) 



d</>u 
= dn dn 

d<t>u = 1        (i ~ 4>n) dn 7      \<P\0 

w      g 
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where,   u„ indicates the wave mean velocity. 

In the above equations,   fe and   /,• are determined by hydraulic experiments 

for various cross-sections.     We used   fe based on the inverse Strouhal number, 

uel am   suggested by Lepelletier (1980).  Then the linearized matching condition 
can be given by 

(13) 

(14) 

in which ifu ar*d <fr\0 
are complex velocity potentials of the inner and outer 

regions, respectively. For the jet length, a simple formula suggested by Morse and 
Ingard (1968) is used. 

Finite Element Formulation 

•   Discretization of Fluid Domain 

To discretize the fluid domain in the standard finite element manner, it is 
necessary to describe the unknown potential,   <j>r> m terms of the nodal potential 

vector,    {4>ei}'   f°r  an  element  (e),  and  the  prescribed  shape  function  vector, 

{N}, as follows: 

*i =   {N}Titi} (15) 

Using Galerkin's technique, the boundary value problem can be re-formulated as 
integral equations. Using following definition of the residual for each element 

{Re) = - f ,.{Jv}[v • (CC^>d + -%-eo2^i-o>2{Ri(vh)2 + R2y2h}^]dal (16) 

and Green's second identity, and introducing the above boundary conditions, the 
system equation can be obtained for each element. Taking the residual as zero 
gives following simultaneous equations: 

£ {([**J + [Ke
r) + [Ke

rJ){tf) + {F°r) + {n,,} + {F*fll}}  =   {0} (17) 
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in  which    [FCQ),   [Ke
r),   [Ke

rJ,   {Fe
r),   {Fe

rJ,  and    {Fe
s)   are  the element 

system matrices given by for the near field region: 

-a>2(% - {Ri(vh)2 + R2v
2h}\{N}{N}T]di2e

1 (18a) 

[/CV,]  =   frCCga{NHMTdn (18b) 

[K°rJ  =   Jr CCg -f^ {N} drmli + J    CCg -^ {TV} dTMo (18c) 

{Fe
r)  =   {0} (18d) 

irra) = - Jrccg
d{%\ +> man as.) 

and for the far field region: 

- o»2 (-§• - {Ri(vh)2 + /?2v
2/*}){iV}{Mr] dQl (19a) 

[JTri] =    {cCga{N){N)Tdn (19b) 

[#rj  =   0 (19c) 

{F%> =   /^ CC,(a#,- ^) {M «71 (19d) 

WrJ  =   - JrCc/(%;^   W ^ (19e) 

•   Finite, Infinite and Joint Elements 

The inner region is modeled by using three-noded triangular elements, in 
which the water depth h, the square of bottom slope (v/?)2, and the 

curvature v2h are assumed to be constant for the convenience of numerical 
calculation. In order to model efficiently the radiation condition at infinity, a 
two-noded infinite element is developed. The shape function of the element is 
given by 
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{N} = Nr(&{NM)    for  0 <: £<: °°,   -1 <i ri<. 1 (20a) 

{AT} = JV,(f)                 for  0 <• £<, oo (20b) 

in which {Ng(r/)} is the Lagrange shape function, and Nr(£) is the shape 
function in the radial direction given by 

NA& = -n£g-el*~* (21) 
V £+ rr, 

in which   e is the artificial damping parameter( e < £), and   rr, is the distance 

to the infinite elements from the origin as shown in Figure 4. The artificial 
damping parameter has been introduced to make the integration in Eq. (19e) in 
the radial direction bounded.    After the integration is completed analytically, the 
value  of   e is  taken to  be  zero.     The  shape  function,   Nr(£), in  the  radial 

direction, except for the artificial damping parameter, have been derived from 
the asymptotic expression for the first kind of Hankel's function in the 
analytical boundary series solutions such as 

#s<* J^eikr (22) 

The above shape functions satisfy the radiation condition at infinity. 

•   Matching the Inner and Outer Regions 

Using   the   matching   boundary   conditions   in   Eq.   (6),   the total   system 
matrices can be assembled as 

£ {([Ke
Q] + [Ke

r]){^} + {Fe
r} + {Fr,}) =   {0} (23) 

in which 

[Kh] = [Ke
Sl],    [**«,] (24) 

[Ke
r]={Ker1],    [K\X    [K\J (25) 

{F$ = { *-„} (26) 

{ FV,} = - J CCg-$-{N)dr} - ([ K\2] + [ Ke
aM«} (27) 
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and   {^f} is the vector of the incident wave potential corresponding to the nodal 

points. 

Numerical Analyses and Discussions 

Verification of the present model 

To prove the validity of present model, numerical analyses have been 
performed for a rectangular harbor used by Lepelletier (1980) in hydraulic 
experiments. Two types of rectangular harbor have been tested. One is a fully 
open harbor {alb = 1.0, a is width of a harbor entrance, b is width of harbor) 
and the other is a partially open one {alb = 0.2). In Figures 6 and 7, numerical 
results without and with entrance losses are presented with the experimental 
results by Lepelletier (1980), respectively. As shown in figures, the calculated 
amplification ratios considering energy loss effects due to flow separation coincide 
very well with the experimental results. Neglecting energy loss effects obviously 
over-estimates the ratio. 

In general, the length of jet-flow, (, has been taken to be zero. As the /,• 

increases, the resonant periods move toward longer periods and amplification ratios 
at the resonant conditions increase. These phenomena have been confirmed in this 
verification. As shown in Figure 7, amplification ratios for the case with /, = 

0.0284 m are smaller than those for the case with /,• = 0- This is due to shifting 
of the first resonant condition. The results considering the effects of the jet-flow 
are better fitted to the measured results. As mentioned before, the length of the 
jet-flow is estimated from the theoretical formula proposed by Morse and Ingard 
(1968) which was derived for the narrow channel with a thin gate. It may be 
required to develop a new formula for estimating the length of jet-flow at the 
harbor mouth more accurately. 

Application of the present model 

To prove the applicability of the present model to the real case and to 
investigate the characteristics of long-period oscillations in a harbor with narrow 
mouth, numerical analysis was performed for the Gamcheon Harbor shown in 
Figure 1. As previously mentioned, field measurements were carried out using 
four PWGs and one RCM-9. For the direct comparison of the field measurements 
and calculated results, the informations for the incident waves such as wave 
heights and directions are estimated. However, it is nearly impossible to obtain 
the accurate informations from the limited set of field measurements, especially 
for long- period waves. Therefore, the incident wave angles were assumed to be 
equal to the main direction of short-period waves previously measured. A wave 
height for each wave frequency was determined from comparisons of the 
estimated and measured results at two stations, PI  and P2 at the outside of the 
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harbor. The estimated incident long-period wave heights were in the range of 0.0 
3-0.07 m. 

The amplification ratios at the innermost station, P4 are plotted in Figure 8. 
In this figure, hollow black circles indicate 13 measured data and black squares 
indicate the estimated results. The resonant periods and amplification ratios 
simulated by the present model are well agree with the measured results. To 
investigate the effects of the entrance losses in the real situation, the numerical 
analysis without considering the entrance losses was performed. The effects of the 
entrance losses were however almost insignificant in the whole tested range, 
except for the slight difference near the first resonant condition. This may be due 
to the fact that the incident wave heights are small in the present case. The 
entrance losses might be effective when the incident wave height is large as the 
case of attacking of tsunami. 
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Figure 6. Variation in Amplification Ratios with respect to Incident 
Wave Heights for a Fully Open Rectangular Harbor {alb = 1.0). 
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Wave Heights for a Partially Open Rectangular Harbor {alb = 0.2). 

Conclusions 

In this paper, the long-period wave oscillations in a harbor with narrow 
mouth has been studied. Field measurements were performed for a harbor with 
narrow mouth, Gamcheon Harbor in Korea. A Galerkin finite element model 
based on the extended mild-slope equation was developed which can handle the 
entrance losses due to flow separation. Verification of the present model was 
proved through the comparison of the estimated and experimental results. 
Comparisons of estimated and measured data in field shows that the present 
model gives quite reasonable results. 

The effects of the entrance losses are insignificant unless the incident wave 
height is large. This may be true for tsunami. It was also found that strong 
jet-flow can affect the resonant condition, i.e., the resonant periods are moving 
toward longer period and amplification ratios are amplifying especially for the 
resonant conditions, as the jet-flow is being strong. 
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Figure 8. Comparison of Measured and Calculated Results for Gamcheon Harbor. 
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