
3D Wave-Current Interactions in Wave-Current Channels 

Jacco Groeneweg1 and Jurjen A. Battjes1 

Abstract 

Measurements of mean velocity profiles in a wave-current flume have shown 
some features for which the mechanism is far from trivial. A 2DV model based 
on the so-called Generalized Lagrangian Mean formulation is developed to study 
the influence of waves on the mean motion, the mean horizontal velocity in par- 
ticular. This influence can be split in two parts, viz. a direct effect of the waves 
via wave-induced driving forces and an indirect effect of waves via secondary 
circulations. To include both effects an existing 1DV model is extended by 
introducing lateral variations including side-wall boundary layers. Resulting 
formulations have been implemented in an existing 2DV non-hydrostatic nu- 
merical flow model. Computations for regular waves following and opposing a 
turbulent current have been carried out and compared with both experimental 
results and results from an existing numerical model. 

Introduction 

Understanding the mechanism of wave-current interaction is of great impor- 
tance for a good prediction of vertical profiles of horizontal velocities. The 
study of these profiles is relevant from both a hydrodynamic point of view 
(bed friction), and a morphodynamic point of view. Observations in labora- 
tory experiments by e.g. Kemp & Simons (1982; 1983) and Klopman (1994) 
of the effect non-breaking waves on a steady turbulent current over a rigid 
rough bed show significant and unexpected changes in the profiles of the mean 
horizontal velocity (see figure 1). 

To the authors' knowledge only Nielsen & You (1996) and Dingemans 
et al. (1996) presented theoretical models to explain the wave-induced changes 
in the Eulerian-mean horizontal velocity profiles. The model of Nielsen & You 
(1996) is based on a local force balance. In a steady two-dimensional flow the 
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Figure 1: Eulerian-mean velocity profiles for the situation of no waves (+), 
following waves (x) and opposing waves (*) of the same size (depth 0.5m, 
wave period 1.44s, wave amplitude 0.06m). After Klopman (1994). 

vertical variation of the total shearing force per unit area of a cross-section 
was balanced by the horizontal variation of the total normal stress. Assuming 
linear wave theory, expressions were derived for the mean wave contribution 
(uw) and for the local radiation stress. Although their model gives a qualita- 
tive explanation of the physical mechanisms involved, quantitative agreement 
with Klopman's results was obtained only after a significant ad hoc enhance- 
ment of {uw) by a linearly depth-dependent empirical factor. The empirical 
adjustment is based on the fact that the interaction with a current induces 
extra vorticity of the wave motion. 

Dingemans et al. (1996) developed a 2DV model, the results of which were 
compared with the wave flume experiments of Klopman (1994). A detailed de- 
scription of this model is given in the report of Van Kester et al. (1996). The 
effect of waves has been incorporated by adding the so-called Craik-Leibovich 
(CL) vortex force, consisting of us x UJ with us the Stokes drift and W = V x u 
the mean vorticity. Among others Leibovich (1983) showed that under certain 
assumptions the vortex force is the main term in the ensemble-averaged mo- 
mentum equations in a so-called GLM formulation. Dingemans et al. (1996) 
observed in their simulations that secondary lateral circulations induced by the 
CL vortex force caused changes in the vertical structure of the mean horizontal 
flow. However, due to poor estimates of the Stokes drift and the CL vortex 
force in the boundary layers, quantitative agreement with Klopman's experi- 
mental results was not obtained for situations of waves following or opposing 
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a current. 
Groeneweg & Klopman (1998) developed a 1DV model, based on the Gen- 

eralized Lagrangian Mean (GLM) formulation. This approach, in which the 
Lagrangian motion is described in a fixed Eulerian framework, has been intro- 
duced by Andrews & Mclntyre (1978) in order to obtain a clear separation of 
the mean and fluctuating motion. In the model lateral variations have been 
neglected. Comparison with Klopman's results shows both qualitative and 
quantitative agreement. 

An intriguing point is that two models of Nielsen & You (1996) and Groe- 
neweg & Klopman (1998) confirm the theory that changes of the mean horizon- 
tal velocity profile are purely caused by phenomena in longitudinal direction, 
whereas Dingemans et al. (1996) suppose the secondary lateral circulations to 
be the reason for changes in the mean horizontal velocity profile in streamwise 
direction. Their prediction of the existence of lateral circulations is supported 
by laboratory measurements of Klopman (1997). 

The purpose of this work is to develop a 2DV model, which describes the 
mean flow under the influence of the wave motion, in a Generalized Lagrangian 
Mean (GLM) formulation in order to provide more insight in the effect of the 
secondary circulations on the mean horizontal velocity profile. The work is 
presently in a preliminary state and the results of the developed 2DV model 
are not yet completely satisfactory. Therefore, the presentation of the model 
will not be given in detail and frequent reference is made to Groeneweg & 
Klopman (1998) (to be denoted as GK hereafter). General formulations of the 
flow equations in a GLM setting as well as a 1DV application of a combined 
wave-current problem have been given in detail in that paper. 

GLM approach 

As already mentioned in the introduction a hybrid Eulerian-Lagrangian ap- 
proach, the so-called GLM approach, will be adopted to simulate the com- 
bined motion of waves and currents in a flume. For the definition of the GLM 
theory we refer to Andrews & Mclntyre (1978), or for an introductory outline 
to Mclntyre (1980) and Dingemans (1997, note 2.10.6). The notation in this 
paper is exactly the same as applied by GK. Here, only the essential idea of the 
GLM theory is outlined. A Cartesian coordinate system (x, y, z) is used, where 
z is the vertical direction, x and y the horizontal coordinates in longitudinal 
and lateral direction respectively. Central in the GLM description is the map- 
ping x —¥• x + £(x,t), where £(x,t) is a field denoting the displacement about 
the position x. By introducing <pt(x,t) — tp(x + £(x,t),t) for an arbitrary 
particle-related function <p, Andrews & Mclntyre (1978) define a Lagrangian 
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mean operator ( )   by 

^OMf = (/(*,*)) , (1) 
where in our case (( )) will be a time-average operator. This implies that 
the average assigned to the fixed point x is taken over disturbed positions 
x + £(x,t). In order that £'is a true disturbance, it is required that £(x,t) = 0. 
The fluctuation tpl is defined in a natural way as <pe = (p^—TpL, and thus tp* = 0. 
Finally, the difference between the GLM velocity and Eulerian mean velocity 
is given by the so-called Stokes drift, us = uL — u. A Stokes correction Tps 

can be expressed in terms of fluctuating quantities. 
In GK the three-dimensional GLM flow equations have been derived in 

a general way. Therefore, the lateral 2DV model, providing a local solution 
in a cross-sectional plane, can be obtained just by neglecting variations in 
longitudinal direction of GLM quantities, except for the hydrostatic part of 
the GLM pressure which is related to the GLM surface elevation ( . The 
total pressure pL is decomposed in a hydrostatic and non-hydrostatic part, 
pL = pg (£   — z) + qL.  The horizontal gradient of the hydrostatic pressure, 

d(, /dx, is assumed constant over the entire cross-section and chosen such that 
the discharge of the combined flow equals the discharge Q of the flow without 
waves. A cross-section at a distance x from the wave maker is defined as Q(x) = 
\(y,z) : —L < y < L, —h < z < £ (x,y,t)\. Here we restrict ourselves to 
vertical side walls and a horizontal bottom profile. 

The flow equations in GLM coordinates are of the same form as those in 
Eulerian formulation. Only the wave-induced driving forces in the momentum 
equations are different, and a wave-related correction in the continuity equation 
causes the mean velocity to be no longer divergence free. 

The wave-induced driving forces are expressed in terms of fluctuating quan- 
tities in GK. The 1DV model presented in that paper provides the vertical 
profiles of the fluctuating quantities as well. In order to take side wall effects 
into account we adopt a procedure that was also used by Mei et al. (1972), 
who analyzed mass transport caused by progressive waves for a situation of 
constant viscosity and no initial current. A cross-section fi(x) of the flume 
is subdivided into five regions, viz. the inviscid core region and the boundary 
layers at the bottom, the free surface and the two side walls. This is sketched 
in figure 2. 

Analogous to the analysis of Mei et al. (1972) viscous effects are neglected 
outside the side wall boundary layers. Consequently, the lateral variations of 
the amplitude functions of the fluctuating quantities can be neglected. The 
flow equations for the fluctuating motion are then reduced to those derived for 
the 1DV problem in GK. The solution of the latter problem will be denoted 
by ip = ipi. Following e.g. Mei et al. (1972) one can easily show that the first 
order first harmonic velocity including the no-slip condition at the side walls 
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Figure 2: Division of a cross-section Q(x) into five regions. 

satisfies Stokes' shear wave solution given by 

u = [1 - exp (PY)] «i , (2a) 

5 = ^ = 0, (2b) 

w = [1 - exp (PY)] Wi . (2c) 

with the factor p = (— iw0/^) ' and Y the distance to the nearest side wall. 
The influence of the mean current and variations of the eddy viscosity v have 
been neglected in the side-wall boundary layers. To sum up: the 1DV model is 
used to determine the vertical distribution of the fluctuating quantities. The 
2DV profiles are obtained by multiplying the 1DV profile (subscript 1) by a 
{/-dependent factor, which only affects the fluctuating motion in the side-wall 
boundary layers. 

The distribution of the wave-induced driving forces in the entire cross- 
section can now easily be found by substituting the laterally varying oscillating 
quantities in the general expressions for the driving forces. 

Implementation of GLM equations in existing numerical model 

Although the flow equations are given in a GLM formulation, their form is 
similar to their Eulerian counterpart. For this reason an Eulerian flow solver 
can be used to integrate the GLM flow equations. We have chosen for the 
2DV non-hydrostatic flow solver developed by Van Kester et al. (1996). For 
the numerics in this model one is referred to loc. cit. After the wave-induced 
driving forces S and the GLM-correction term in the continuity equation 
have been evaluated, implementation of these terms is straightforward. 
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The implementation of the boundary conditions at the bottom and side- 
walls needs special care. In Van Kester et al. (1996) partial-slip conditions 
are imposed at those boundaries, using a logarithmic law-of-the-wall formula- 
tion. This type of boundary condition differs from the no-slip condition used 
in the 1DV model. Therefore, correct expressions had to be determined for 
these boundary conditions in a GLM setting. For the time being the simplest 
possible approach has been adopted. The formulation applied by Van Kester 
et al. (1996) is based on a formulation of Grant & Madsen (1979) and takes 
the presence of the wave motion into account. Given a shear velocity at a 
certain distance from the wall, the friction velocity and related shear stress are 
determined. This formulation is given in an Eulerian framework. In order to 
obtain the GLM shear stress at a closed boundary, the following algorithm has 
been applied: 

1. The GLM velocity at a certain height or distance from the side wall is 
transformed to its Eulerian equivalent at the same height. 

2. The formulation of Grant & Madsen (1979) which has been applied by 
Van Kester et al. (1996), is used to determine the Eulerian shear stress 
at the boundary. 

3. The Eulerian shear stresses are transformed to GLM shear stresses by 
adding the Stokes correction of the shear stress under consideration. 

Finally, for simulating turbulent flow a turbulence model has to be imple- 
mented. In a first approach a classical turbulence model has been used. Any of 
the turbulence models implemented by Van Kester et al. (1996) can be used. 
For this study a k — e model was chosen. In order to take the wave influ- 
ence into account, boundary conditions for the turbulent kinetic energy and 
dissipation are related to the shear velocity near the boundary. As mentioned 
above the shear velocities are determined using a logarithmic law of the wall. 
For closure of the turbulence model the production term is computed with 
Eulerian velocities, which are determined by transforming the GLM velocities. 

Model results 

Mean velocities have been computed for situations of following and opposing 
waves. In order to compare the model results with experimental data, the 
initial conditions of one of Klopman's (1994; 1997) measurements have been 
applied. In the present model a turbulent current with a constant discharge of 
Q = 0.08 m3s-1 was generated in a 1.0 m wide flume (L = 0.50 m) with a still- 
water depth h = 0.50 m. A monochromatic wave field following or opposing 
the current with a wave period T = 1.44 s (relative to the flume) and wave 
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amplitude a = 0.060 m is superposed on the current. All presented results 
refer to the situation at t = 1600 s and have been obtained on an equidistant 
grid with horizontal and vertical resolution Ax = 0.01 m, resp. Ay = 0.0125 m 
and a time step At = 0.02 s. 

In the present 2DV model the wave-induced driving forces depend via 
the orbital quantities on the factor j3 = (—iw/i/)1' . In our analysis the 
quantity v was assumed independent of the lateral direction. We have taken 
v — 10~4m2s-1 in all experiments, representing a turbulent oscillatory mo- 
tion. This choice for v leads to a factor /3 for which Re(/3) = — (OJ/2^)

1
'
2
 « 

-148m-1. 
Since velocity measurements have been carried out at fixed locations and 

are thus Eulerian, the GLM velocities uL have to be transformed to Eulerian 
velocities. In this section these are denoted as U. As already mentioned 
U = uL - us. 

In figure 3 and 4 the results for the mean velocity distribution in a cross- 
section at x = 22.5 m from the wave maker and the mean horizontal velocity 
profile in streamwise direction in the center of the flume are shown for the 
situation of waves propagating in the current direction. The agreement with 
measurements of Klopman (1997) is only qualitative. The direction of the 
computed secondary circulation is correct, but the velocity magnitude is a 
factor 2, and at the side walls even a factor 3 larger than measured. Near 
the side wall the maximum velocity magnitude is 2.0cms-1 and in the center 
1.6 cm s_1. The computed secondary circulations are comparable to those ob- 
tained by Dingemans et al. (1996). The mean horizontal velocity in the center 
of the flume is fairly well predicted by the 2DV model. Compared with the 
measurements of Klopman (1994) and the 1DV results of GK there is a slight 
overprediction in the lower region of the flume and an underprediction in the 
higher region. 

In figure 5 and 6 the results have been plotted for the situation that waves 
are propagating in the opposite direction. Once again, the maximum veloc- 
ity magnitude near the side wall is 2.5cms"1 and in the center of the flume 
1.8cms-1, which is even an overprediction of Klopman's (1997) experimental 
data with a factor 4 to 5. The prediction of the mean horizontal velocity pro- 
file in streamwise direction is even worse. Whereas for the situation of waves 
following the current at least the trend was predicted correctly, this is not 
true in the opposite case. In the upper 40% of the flume the velocity gradi- 
ent seems to vanish whereas the experiments of Klopman (1994) and the 1DV 
computations of GK show an increasing velocity gradient. 

The side walls should have less effect on the mean velocity profile in the 
center of the flume when a wider flume is considered. The secondary lateral 
circulations should then decrease in magnitude. Moreover, the 2DV solution 
should converge to the 1DV solution as L —> oo.  However, we remark that 
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Figure 3: Mean velocity distribution in cross-section for waves following 
current. Note difference between horizontal and vertical scale. 
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Figure 5:  Mean velocity distribution in cross-section for waves opposing the 
current. 
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some principal differences in the formulation of both models, such as the tur- 
bulence model and boundary layer treatment, will induce some differences in 
the results. 

To study the effect mentioned above, the same situation with a following 
current is considered as before, but now in a 5m wide flume. The discharge 
is increased proportionally, Q = 0.40 m3s-1. In figure 7 the velocity distribu- 
tion is shown only in the region 50 cm from the left side wall. The velocity 
magnitude is obviously smaller, at most 0.8mms_1. A circulation cell can still 
be observed. Our main interest concerns the mean horizontal velocity pro- 
file in the center of the flume as given in figure 8. Comparing this with the 
distribution obtained in a 1 m wide flume only shows a slight difference. 

£-0.25 

y [m] 
-2.2 

-¥ 0.25 mm/s 

Figure 7: Mean velocity distribution in a part of the cross-section for waves 
following the current in a 5 m wide flume. 

Discussion 

Two important philosophies explaining the wave-induced changes in the mean 
horizontal velocity profiles are known so far. One is based on a 1DV local force 
balance neglecting lateral variations, and in the other secondary circulations 
in the cross-section are essential. In order to find out which phenomenon is 
dominant a 2DV numerical flow model based on the GLM formulation has 
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Figure 8: Mean streamwise horizontal velocity profile in center of a 5m wide 
flume for waves following the current. 

been developed. It is still in a preliminary state and the numerical results 
obtained so far are not always satisfactory. 

Numerical experiments with the 2DV model for a 1 m and a 5 m wide flume 
give almost similar predictions of the mean horizontal velocity in streamwise 
direction in the center of the flume and a significant difference for the order of 
magnitude of the circulations. One might therefore conclude that phenomena 
in streamwise direction are dominant over those in lateral direction. However, 
the 2DV model overpredicts the velocity components in vertical and lateral 
direction measured by Klopman (1997). Two possible reasons are given here. 
Firstly, the computations have been carried out on a regular grid with a grid 
size of 1 cm, which was too coarse to represent the side-wall boundary layers 
well. These are only a few millimeters thick (order /3_1). An irregular grid 
which is finer towards the boundaries has already been implemented. Results 
of these numerical experiments will be reported in the future. 

Secondly, in the formulation of wave effects in the partial slip conditions and 
the k — e turbulence model, the simplest approaches have been applied. GLM 
quantities are computed by Eulerian based models. Transformations from 
GLM to Eulerian and vice versa have been carried out only at the beginning 
and at the end of those processes. Improvement of this approach might lead 
to better results for the circulations. 

Furthermore, extra attention has to be paid to the mean horizontal ve- 
locity profile for the situation of opposing waves. Towards the free surface a 
completely deviant behavior was observed compared to the measurements and 
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predictions with the 1DV model. The cause of this is unknown for now and 
will be considered carefully in the near future. 
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