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Abstract 

The instability of bichromatic wave train in water of intermediate depth is in- 
vestigated by means of a perturbation method. The analytical solution, treated 
as the result of an initial value problem, yields the modulation and disintegration 
of the wave train, caused by the interaction of two incident waves of finite ampli- 
tude. A laboratory study was also conducted to measure the surface elevations of 
bichromatic waves generated by several types of compound sinusoidal signals. The 
calculation using the third-order finite-amplitude wave equation is carried out, and 
its prediction is compared with the measured data obtained under several experi- 
mental conditions. 

Introduction 

For surface waves in water of arbitrary depth, small disturbances cause the in- 
stability as the waves propagate after a certain distance. Eventually the instability 
leads to loss of coherence, while the wave energy distributes over a broad spectrum. 
Benjamin and Feir(1967), using a perturbation approach, studied the instability of 
nonlinear deep-water waves, and showed that weakly nonlinear free-surface waves 
are inherently unstable to modulated periodic disturbances. In the following paper, 
Benjamin(1967) qualitatively explained the experimental evidence, known as side- 
band instability, using a second-order perturbation solution, and predicted that the 
side-band frequency components grow exponentially in time. Their results, how- 
ever, are limited to the initial instability. Since then, much theoretical effort has 
been expended to search for an uniformly valid equation describing the behavior 
of the Stokes' wave train; for example, Lighthill(1967) examined the early stage of 
the nonlinear modulation of a wave packet using Whitham's theory(1965) based 
on an averaged Lagrangian, and Chu and Mei(1970) extended the Whitham's the- 
ory to derive the modulation equation for slowly varying Stokes' waves.   On the 
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other hand, Zakharov(1968) derived the cubic Schrodinger equation which predicts 
the spatial evolution of the wave packet, and later, Zakharov and Shabat(1972) 
obtained an exact solution of the nonlinear Schrodinger equation. Their solutions 
predict the disintegration of initially uniform wave train into a definite number of 
wave groups. Yuen and Lake(1975) proved that Whitham's theory yields the same 
nonlinear Schrodinger equation when applied consistently to the order considered. 
All these solutions can be only applied to the case of the monochromatic wave train. 
The instability of the bichromatic wave train, having a set of discrete frequencies, 
has been regarded as the similar phenomenon which can be described by the evolu- 
tion equation of the monochromatic wave. The instability by the bichromatic wave 
motion develops slowly as waves propagate from the wavemaker, and the growth 
rate of the instability becomes greater as the wave steepness increases. An example 
is found in a recent literature by Stansberg(1994), who observed a strong variation 
of wave pattern downstream the wave tank. 

Despite the interest in the subject, few theoretically justifiable equation is 
available, to date, for predicting modulated surface displacements responsible for 
bichromatic waves. The purpose of this study is to investigate the modulation and 
disintegration of the bichromatic wave train in water of intermediate depth. A 
perturbation method is applied to the velocity potential and the vertical displace- 
ment of the water surface. The present equation predicts the surface displacements 
during the period of transition from a stationary state to a steady state in a finite 
distance from the wavemaker. The solution explains the instability of the peri- 
odic wave train mathematically as a result of the interaction of two incident waves 
propagating in the same direction. 

Theory 

Now we consider a two-dimensional irrotational wave motion bounded above 
by a free surface and below by a rigid horizontal bed, and assume the fluid to 
be inviscid and incompressible. The Eulerian velocity components of the water 
particles can be expressed in terms of a velocity potential  <S>(x, y, t)  such as 

9<J> 
u{x,y,t)   =    — (1) 

9$ 
v(x,y,t)    =    — (2) 

where u(x, y, i) = horizontal velocity; v(x,y,t) = vertical velocity; x = horizon- 
tal coordinate; and y = vertical coordinate measured from the still water level, 
respectively. For incompressible flow, the velocity potential must satisfy Laplace 
equation such as 

92$     d2$ 
W + W=°- (3) 

The kinematical and dynamical boundary conditions at the free surface are 

m+9^ + 2«9^ 2 + (^)2} = 0-^> (4) 

dt)     d^dri     9* 
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where TJ(X, t) = vertical displacement of the water surface measured from y = 0 ; 
g = acceleration due to gravity; and t = time. No fluid can pass perpendicular 

to the plane horizontal bottom, and therefore the bottom boundary condition is 

9$ 
— = 0 ony = -h, (6) 

where h = water depth from the still water level. 
In the finite-amplitude wave theory, the perturbation method is used to solve 

eqs.(3), (4), (5) and (6). The dependent variables are defined in terms of a power 
series, with successively smaller terms defined by a small perturbation parameter 
raised to a higher power in each succeeding term. Therefore, the velocity poten- 
tial, vertical displacement and angular frequency for a third-order wave of finite 
amplitude can be expressed as 

$    =    eSW + e^W + ie^'+OfY*), (7) 

V   =   erf»+<?Tim + l<?r>w+Otf), (8) 

a   =   a• + eam + ~e2am+0(e*), (9) 

where e = perturbation parameter; a = angular frequency; and 0()= order symbol. 
The superscripts (1', (2\ and '3' denote quantities corresponding to the first-order, 
second-order and third-order perturbation solutions. 

Goda and Abe(1968) developed a progressive wave theory for finite amplitude 
waves using a power series expansion. The results for a third-order progressive 
wave are as follows. 

The perturbation functions of velocity potential are 

,„ o-(0) coth k(y + h)   .,,.-, ,,n> 

$<2>    =    p<r(0)c42' cosh 2k(y + h) sin2(kx-crt), (11) 

in which 

$<3>    =    ACT<°>Q<3>cosh3fc(2/ + /i)sin3(te-<ri), (12) 

3 (c4 - 1) 
8cosh2fc/i' 

(c2+3)(9c5-22c3 + 13c) 
32 cosh Zkh 

The perturbation functions of vertical displacement are 

r)w    -    -cos(kx-at), (13) 
k 

vm    =    ±.p•cos2(kx-at), (14) 

r,<3>    =    I{(3f> COs(kx - at) +/f > cos3(kx - at)}. (15) 
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in which 

OF = 
3e3-c 

4     ' 

3c4 + 8c2 - 9 

(3)    __   3(9c6-3c4 + 3c2-l) 

^2     _ 32 ' 

The perturbation functions of angular frequency are 

<r<0)    =    yfgk tanh kh, (16) 

<x(1>    =   0, (17) 

aW    =   fcVo)9c
4-10C

2 + 9| (lg) 

8 

in which   fe = wave number; and c = coth kh. 
When two incident waves of finite amplitude interact, the free surface conditions 

in eqs.(4) and (5) cannot be satisfied by a simple superposition of two waves. The 
two original waves propagating in the same direction deform as a result of the 
interaction, and the difference due to the deformation results in the formation 
of nonlinear bichromatic waves. The combination of two (the first and second) 
incident wave trains with different wave amplitudes, a/ and an , and a pair of 
discrete wave periods, Tj and TJI is considered here. The solution of bichromatic 
waves, therefore, must be composed of the first third-order incident wave, second 
third-order incident wave, and resonance effect. The velocity potential and the 
surface displacement of bichromatic waves are expressed as 

$    =   ec&w + e
2$«-l-ie3<l>f»-l-Ae$• + (Ae)2$g) + i(Ae)3*g, 

+e2<I><? + \e^\ (19) 

„     =     £^) + e
2^) + Ie3T;(3,+A< + (A£)2J?<?+l(Ae)3^3, 

+A£, + iA£', (20) 

in which 
, ,   .      anka 

e = o/fc/,    ana   A = —;—. 
a/fcf 

In these equations, the subscripts   /, //,   and   F   denote the first incident wave, 
second incident wave, and resonance effect, respectively. 

The angular frequency of the third-order incident wave increases with increasing 
wave amplitude if the wave number is given. For bichromatic waves, therefore, 
the angular frequency of each incident wave is disturbed in order to obtain the 
correction terms. Taking into account the secondary effect, the perturbations of 
angular frequencies are expressed as 

°i = vr+l^r+viF), (21) 

on    =   <) + ^2(A<+a//F), (22) 
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where aiF and (Tup denote the third-order angular frequencies induced by 
the interaction of the first and second incident waves, respectively. In the above 
equations, the first and third order perturbation frequencies are already given in 
eqs.(16) and (18). 

Now, a generalized theory for a bichromatic wave system is formulated to the 

third order. The dynamical and kinematical free-surface boundary conditions are 
used to obtain linear partial differential equations for each order of the approxi- 
mation. In formulating the expressions, it is convenient to replace the nonlinear 
free-surface boundary conditions in eqs.(4) and (5) by conditions to be satisfied 
about y = 0 instead of y =77 . Expanding eqs.(4) and (5) into a Taylor series in 
y, and substituting eqs.(19), (20), (21) and (22) into these equations, the boundary 
conditions for the second and third powers are as follows. 

The second-order equations are : 

dy dt   ~   { dx    dx   +   dx    dx      Vn   dy*       Vl    dy2  h (    ' 

The third-order equations for [A] are :. 

2(S%    +      m   +*ffn    Qt 

<rn
Vl   dtdy cTjVn  dtdy       <r, "F   dtdy      Vj   8tdy 

17Vl Vn 9i%2       2an
Vl    dtdy2        Vl ' 8x    dxdy        Vu   dx    8x9y 

A%    <te    cte%        ^    %     dj/2 ^/J   9y     c»2/2 Vl    dy     dy2 

dzfla*•     azfj'd&p   d*yd*p   az'pdt'p 
dx     dx dy     dy dx     dx dy     dy  ' {    ' 

1,9*2    _    d7>F      x'BFrtns 
2{  dy dt a a    dt ' 

a2$>w a2s>m        32*(1)        »2*(2) 

-    _     \„<2)        g  - An(1)        -f    - »i<2>        J    - n(1'        F 
A^   ~5^       A^     %2 ^     %2 ^      Qy2 

dx    8x dx    dx '    dx   dxdy u   dx   dxdy 

+   XVl    dx   dxdy' {b) 
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The third-order equations for [A2] are : 

^(CT<3> + qf + -^) = .., (27) 

2Al  8y dt        as    dt  >~     ' W 

The right hand sides of eqs.(27) and (28) are same as those of eqs.(25) and (26) 
except for the subscripts 7  and 77  which are switched. 

By differentiating eq.(23) with respect to t, eliminating rjn from eqs.(23) and 
(24), and substituting the expressions for $/' , $$ , rfP , and ifu into the 
combined equation, the free-surface boundary condition on y = 0 is given by 

9$<2)     92$<2) A 
9~foT + ~QP~~ = ^-y-{(7u + 7E)sin(x/-XZf) +(721 - I22)s'm(Xi + Xu)},     (29) 

in which 

7n    =    ^l~au){af+af~afaf{l + Clcn)}, 

1* = (^-r-?+<4-^?4-40)-?), 

721 =    (aj + aj^af + af+afa^il-cjcu)}, 

,kll     (0)    2    ,       (0)    2     ,     ^      (0)    2     ,       (0)    2\ 
722 =    (-jjpcr} Vf + o-^Vji- + J-^n^n + °j Vr)> 

where x/ = fc/a; — 071; and x# = £ff£ — ant. Eqs.(3), (6) and (29) are satisfied by 

*F     =    •^-iWF\sin(xi-Xij)+^)
2sm(xi + Xii)}, (30) 

in which 

(2)    _ 711 + 712        cosh(fcj -kn)(y + h) 
2cosh(kj — kjj)h  UJ'J_JJ — (07 — 071)2 

m    = 721 + 7a        cosh(fc/ + ku) {y + ft) 
2cosh(fcf — kn)h <*ij+II — (07 + an)2 

The corresponding surface displacement is obtained by substituting eq.(30) into 
eq.(23). Finally the second-order surface displacement by the resonance effect are 
obtained as 

rif   =    ^j^{0PlcoS(xI-Xii)+0iP2coS(xI + Xn)}, (31) 

in which 

3<2>    _ "4-g7u ~ {°i - vil) 712 
F1 (ai - 077) M_.tr - (°7 - °7/)2} ' 

P: 
,(D    _ ^/+Jr/72l + (o-J + Q7j)27l2 

(07 + ail) Wi+n ~ (aI + an)2) ' 
FT. 

^'1-11   —   g{k[ — ku) tanh(fc/ — ku)h, 

V'I+II   =   9(ki + ka) tanh(fc/ + kn)h. 
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The second-order surface displacement by the resonance effect have two components 
with wave numbers and frequencies consisting of the sums and differences of those 
of the first and second incident waves. These amplitudes are bounded in time and 
their magnitude is dependent on the water depth. 

To find the third-order velocity potential $•   and surface displacement  rfp , 
the same procedure is followed in the second-order approximation.   Eliminating 
rfp   from eqs.(25) and (26), the combined free-surface boundary condition on 

y — 0 is obtained for [A] as 

dy +     8t>         ku   (     ku      +2)smxn 

2X 
=   J7f-l{(2ai ~ ^-f)6! +gh}sm(2xi - xa) 

+    {(2<T/ + 077)62 + gb5} sin(2x/ + Xn) + {vnh + gh) sin xa_ 

in which 

bx    =    -J~LL + 2of afl sinh2kth - crfcr•a%(cn cosh 2kjh + sinh2k,h) 

(°)21 (0)    (0) j      / , \ (0)    (0) (0)2 

o-g  fcgcg     a} 'a^'knjc! + ca)     a} 'a\{cn     a)   cj 

8fc/ 4fe/ 2 4 

°j" M_zr7n + (°7 - °iif I12}      ,  (711 + 712)(°7 - o-nWi-u 
45*7(07 - crII){ui'I_n - (07 - an)2}      45fc/{w^_// - (07 - 07/)2} 

o-j0)cj(7ii + 7l2)(fcj-fcg) g-/0>(72i ~ JnWi+n 
4M-ir _ ("•/ ~ °7r)2}        ^9kiWI+n - (07 + o-//)2} 

62    =    _c_ilL + 2af afl sinh 2*7/1 - ^V^af^Cff cosh 2*7/1 - sinh 2*7/1) 

8*7 4*7 4 

of' M+gTZl + (o-J + o'J/)2722} (721 - 722)(07 + an)u'I+n 

igk^crj + 077) {«>/+# - (07 + 07/)2}     4#*7{^+/J - (a-/ + 07/)2} 

^/0>c/(72i-722)(fc/ + fc//)  ,        o-/0)(7n+7i2M_// 

63    = 

4Wl+n - (ai + °"-ff)2} 4#*7{c4_zf - (a-/ - cr,/)2} 

Ak[ 2ki 2 2 

aT M-//711 +(<?!- o-//)27l2>      ,   (711+ 7l2)(o7-cr/zM^J- 
45*7(0-/ - cr/f){^_ir - (07 - cr//)2}      \gkt{Jl_II - {a, - 07/)2} 

P~/°'c/(7ll+7l2)(fc/-fcj/) ^j"(7ll+7l2M-if 
4M-// _ (^ ~ °7/)2} 45fc/{u)^_if - (o-/ - 07/)2} 

(32) 
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°j0> M+//721 - ("7 + O-JJ)
2

722} _      (721 - 722)0/ + TffM+g 
45*7(07 + 07/)M+i: - (07 + erg)2}      4gfc/{w^+// - (cr/ + cru)2} 

P/°'c/(721 -722)(fcj + fcjf) Q-r(721 - 722V/+J 
4M+// ~ (ai + au)2}       ighWj+n - (ai + a'i)2} 

0(2)    (0) 1 
h  =  _pn crgfcgcg _ ap)Jb^ cog]i 2Jfc^ _ 2^,^,^ cosh 2kjh _ PfypklCl 

<r%kn      cfkn     afk,     crg'fcg 
8 £7 4 2 4 

°J0> C/{'4+g721 ~ (o-J + °-Zf)2722} _ crfcfjk! + %){^+JJ721 ~ (07 + Q7l)2722} 
4s(o7 + 07/)fw^g - (07 + an)2} 45^/(0-/ + 07j){c4+zf - (cr; + (Tg)2} 

(721 - 722) (fc/ + fcff)       (711 + 712) (fc/ - fcg) 
2 

+ agfcg cosh 2kjh - 2n•afkI cosh 2*7/1 - /Sf{cr'j"kIcu 

4M+a ~ (°"-r + va)2}     tkjiu'i+n ~ (ai " °"#)2} 

gg'fcg      <rfkg      afk;      cr^ku 
8*7 4 2 4 

o-f)cj{^_//7i1 + (07 - o-if)27i2} _ g-/0)c/(fcj - fcg)M_g7ll + (07 - o-g)27i2} 
45(07 - 07/) {y^ - (a-/ - erg)2} 4fffc/(cr/ - 07/) {w^ - (07 - 07/)2} 

(711 + 7i2)(fc/~ fcff)   _    (721 ~722)(fc/ + fcg)2 

4M-.ff - (°7 ~ o-//)2}      4fc/{^+// - (07 + 07/)2} 

<fc2/      <rf>ku 

4fc/ 2 

o-f ,c/{a;^_//7n + (a/ - <xg)2712} (7n + 7i2)(*7 - fcg)2 

45(07 - 0g)M_ff - (07 - 07/)2}      4*7{<4_g - (07 - 0g)2} 

0/O)c/(fc/ - fcg) {^_g7n + (07 - crg)27i2}        (7n + 7i2)(*7 - kn) 

4gkI(crI - 07/){<4_g - (07 - 07f)2} ^Wi-u ~ (0/ - au)2} 

af)c/{^+g721 - (0/ + crg)2722} (721 - 722)(fc/ + *7l)2 

4fl(cr/ + cru){w'I+n - (07 + 07/)2}       ikI{u)'I+[I - (0/ + Tg)2} 

of'cjffc/ + *7f)M+//721 - (0/ + 0g)2722> (72l-722)(fcj + fcg) 
AgkI(cr[ + <JU){u'[+u - (0/ + 0g)2} ^Wi+u ~ (&! + °7/)2} ' 

The final results of $£!', ?/£?', cr/F, and anF become 

«(3) w ^l r„    .     207 - (Tg + dF\      .     2(7/ - (Jg - crF1 
**•     =    Mv~, rr^r; ;—rH2sin ism tsm(2kr - kn)x F lk[kucos}\(2ki-ku)hv 2 2 \    1       ui 

+    sin(2o7 — cru)tcos(2k[ - ku)x} cosh(2*7 — k[j)(y + h) 
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1P2 ro   .    2a-/ + a a + °~F2 ,   .    2u/ + aa - aF2 -{2sm isin tsm(2fc/ + kn)x 

(0)       ,  _,.      cosx//] 

kiku cosh(2fc/ + ku)hl 2 2 

+   sin(2<jf + a/j)tcos(2kj 4- kn)x} cosh(2fc/ + kn)(y + h)] 

+   \[same as the above except for the subscripts I and II being switched], (33) 

(3)                ^     r    /   r/o                 i         \       2o-/- crj/+ crF1     .   2a i - an - aF1 VF     =    -pjg-[-V'l{(2o-/-<Tif + crFi)cos ism 1 

.                              .    ,    2crj — an -\- aF\          2aj — aH — aF\ 
+   (2ai ~ an + aFi) sin icos t} sm(2fcj - knx) 

i   r/n      ,         ,         \        2aj + an + aF2    ,   2aj + an - aF2. 
-   ip2{(2o-i + o-u + aF2) cos ism —t 

,     m                        \  •   2o-/+ cr//+ 0-^2 ,       2aj + an - aF2 .   .,„.,,     s 
+    (Zaj + an — aF2)sm icos i}sin(2fc/ + knx) 

+   (26i - Vi2^'^) cos(2x/ - Xu) ~ ipi2Cri~'TlIcos{(2kI - ku)x + (2a/ - a„)t} 

+   (26a - i>2^1~-) cos(2X/ + Xn) ~ v,2
2(JJ + '7^C0S{(2fc/ + fc^ + (2<rj + o-zf)*} 

2g(63fcj/ - 2b6a<g>cn 

2ana^cn+gku 

A2 

+    ———[same as the above except for the subscripts I and II being switched],(34) 
gkika 

2\2kI(aIb3+gb6) 
aiF   =   ~TT7n TO ;—T\< ^°' kn(2aIa

K
I 'cj + gkj) 

2kn(aIb3 + gbe) 
aiIF   =   ~Tr^ (5)—;—r~\' ^ ki(2anan'cn +gkn) 

in which 

2{(2crJ-07/)fri+flM 
^    ~       (2aj-anV-aFl    ' 

2{(2a1 + an)b2+gk} 
% (2aI + anV-aF2    ' 

aF1    =   ff(2/c/ — kn) tanh(2fc/ — fcjj)/i, 

a%2    —   9{%kj + kn) tanh(2fcj + kn)h. 

Since laj — an is nearly equal to aF\ in eq.(34), the trigonometric functions 
sjn •2ajJ=£u^£Ei 1 ancj cos zei-va-'ni are slowly varying in comparison with the func- 

tions sin 2"i+"u-"F\t and cos 2tr/+",ff-grif. The low-frequency factor on ^-"Vf-^ 
induces an amplitude modulation on the high-frequency factor on 2<rf+(T|'"~°'f'1i. The 
resulting modulated oscillation causes the phenomenon of beats, which are limited 
to the initial stage. 
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Experiments 

For the purpose of verifying the present wave theory, experiments were con- 
ducted in the 26-m-long, 0.5-m-wide, and 0.8-m-deep wave tank at Tokyo Metropoli- 
tan University. A piston-type wave generator is placed at one end of the tank, and 
a wave-absorber is installed at the opposite end to reduce the wave reflection. A 
series of electronic signals were produced by an arbitrary wave-form synthesizer, 
which controlled the motion of wave paddle. The surface elevations were mea- 
sured using resistance wave gauges at four horizontal locations, 10.0, 12.5, 15.0, 
and 17.5m from the wave paddle. The water depth was varied from 20 to 40cm. In 
each water depth, several strokes of paddle motion were prescribed. The bichro- 
matic waves composed of a pair of cosine waves have two incident wave amplitudes 
ai and an, and two incident wave periods 7/ and Tu- The wave conditions used 
in the present experiment were 77 = 0.5sec and Tu = 0.55sec, or Tj — 0.5sec and 
Tu = O.Gsec for a pair of bichromatic wave periods and or : au = 1:1,1 •: 2, or 
2 : 1 for the corresponding ratio of two incident wave amplitudes. In each exper- 
imental condition, wave data were collected from four wave gauges continuously 
at a frequency of 47Hz for about three minutes in order to provide data samples 
sufficiently long for FFT analyses. 

Results 

A series of wave records observed at four fixed points and these amplitude spec- 
tra are shown in Fig.l. The abscissa and ordinate in figure(a) show the time in 
seconds, and the surface displacement above the still water level in cm, respec- 
tively, while those in figure(b) show the frequency in Hz, and the amplitude in cm, 
respectively. The periods of the first and second incident waves are 77 = 0.5sec 
and Tu = 0.55sec, and the ratio of the first incident wave amplitude to the sec- 
ond incident wave amplitude is o/ : an = 1 : 1. In this case, the water depth is 
h = 40cm. The measured wave profiles are different from the input bichromatic- 
wave signal, by which the wave paddle motion is prescribed. The wave train at 
each location exhibits an appreciable modulation, even though the wave form itself 
is nearly uniform at each point. The modulation becomes smaller as the waves 
propagate from the wave paddle to the opposite end of the wave tank. Each spec- 
trum contains four major frequency components within relatively narrow range 
of frequencies. The third-order frequency components by the wave interaction at 
x=10m are the largest; they decrease their amplitudes rapidly toward the end of 
the wave tank. Fig.2 shows similar plots of the bichromatic waves for Ti = 0.5sec, 
Tu = 0.6sec, a/ : au = 1 '• 1, and h = 40cm. The modulation is not so large in 
this case. The basic profile of wave train remains the same throughout the entire 
process. The carrier-frequency and second-harmonic components of incident waves 
are quite evident but the third-order frequency components by the wave interaction 
are not seen clearly in the spectrum. The energy transfer within the spectrum is 
not appreciable, while the dissipation of the total energy is small. 

Several free-surface elevations obtained from four different experiments are 
compared to theoretical results computed by the third-order perturbation equa- 
tion[(20)]. To describe the natural profile of bichromatic wave train, each calculated 
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(a) Experimental Results (to) FFT Results 

Fig.l Surface displacements of bichromatic wave train and FFT analyses 
for T[ = 0.5sec, Tn = 0.55sec, ar : au ~ 1 : 1, and h — 40cm. 

5 10        15       20       25       30 
sec 

(a) Experimental Results 

0            12           3            4           5 

• .Ai .. . . 
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'• .AL .. .  , 
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Fig.2 Surface displacements of bichromatic wave train and FFT analyses 
for T[ = 0.5sec, Tn = 0.6sec, ai : an = 1 : 1, and h = 40cm. 

value is plotted for thirty seconds at intervals of 0.02 sec. Comparisons of the mea- 
sured free-surface displacements with the theoretical ones are presented in Figs.3-6. 
In these figures, (a) shows the experimental data plot, and (b) shows the theoret- 
ical profile. A set of time series for 7/ = 0.5sec, Tn = 0.55sec, ai : an = 1 : 1, 
and h = 40cm are presented in Fig.3(a). The modulation caused by the inter- 
action of two incident waves occurs in all locations, and the resonant nonlinear 
interaction leads to the disintegration of the wave envelope. The original periods 
of incident waves, however, remain constant throughout the process of the modu- 
lation. Fig.3(b) shows an example of calculated wave profiles for a pair of initial 
amplitudes, cij = an = 0.37cm. These initial amplitudes were determined from 
actual free-surface measurements by the wave gauge at x = 10m. Fig.4 shows a 
comparison of the measured data for Tj = 0.5sec, Tn = 0.55sec, aj : au = 1 : 1 and 
h = 20cm, and the theoretical calculation for a/ = an = 0.34cm. Although the pe- 
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Fig.3 Measured and calculated surface displacements 
(T[ - 0.5sec,Tn = 0.55sec, <Xj : an = 1 : 1, and h = 40cm). 

(a) Experimental Resufts (b) Theoretical Results 

Fig.4 Measured and calculated surface displacements 
(T[ = 0.5sec, Tu = 0.55see, aj : an = \ : 1, and h — 20cm). 

riods of the first and second incident waves and the ratio of amplitudes of them are 
the same as those in the previous case, the water depth is shallower. In this case, 
the modulation is also found at all locations. A basic difference to the previous ex- 
periment for h — 40cm is observed under the nodes of the envelope. Fig.5 presents 

a set of time series for Tr = 0.5sec, Tu = 0.55sec and at : an = 1 : 2, in the water 
depth of h = 20cm, and the calculated surface displacements for aj = 0.22cm and 
an = QAAcm. The agreement between the measured data and the theoretical result 
is reasonable on the tendency of a change of wave train. Fig.6 shows a set of tem- 
poral records of surface displacements for Ti = 0.5sec, Tu = 0.6sec, aj : au = 1 : 2 
and h = 20cm. The theoretical results were calculated by the present third-order 
bichromatic wave equation for a/ = 0.38cm and an = 0.76cm.. The measured data 
are well described by the theoretical curves in spite of such difference in the two 
wave periods and amplitudes. 



668 COASTAL ENGINEERING 1998 

10       15        20       25       30 
sec 

(a) Experimental Results 

0 5 10        15       20        25        30 
sec 

(b) Theoretical Results 

Fig.5 Measured and calculated surface displacements 
(7> = 0.5ecs, Tn = 0.55sec, aj : an = 1 : 2, and h = 20cm). 

20        25        30 

(a) Experimental Results (b) Theoretical Results 

Fig.6 Measured and calculated surface displacements 
(7> = 0.5sec, Tn = 0.6sec, or : aj; = 1 : 2, and h = 20cm). 

Conclusions 

The equation based on a finite-amplitude approximation was derived to calcu- 
late the surface displacements of bichromatic waves in water of intermediate depth. 
Experiments were also performed to investigate the modulation of bichromatic wave 
train in our wave tank. Prom the results of this study, the following conclusions 
are drawn. 

When a wave train is generated by a pure bichromatic-wave paddle motion, the 
wave train usually modulates in the wave tank. This tendency is more prominent 
when the difference of the first and second incident wave periods become small; 
accordingly, measurable modulation did not develop in our tank length, when the 
bichromatic waves with the periods 7} = 0.5sec and Tn = 0-Qsec were generated. 
The water depth affects to the disintegration of wave train; indeed, the modulation 
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tends to disintegrate into smaller wave envelopes when the water depth increases. 
The third-order amplitudes by the wave interaction are larger than the first-order 
amplitudes when the difference between the first and second incident wave periods 
is smaller. The results obtained in this study are physically valid over- the range of 
our interest. 
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