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Abstract 

Nonlinear mild-slope equations are a set of equations which were derived 
to analyze fully-nonlinear and fully-dispersive wave transformation. In the 
present study, it is shown that refraction-diffraction equations including the 
mild-slope equation, nonlinear shallow water equations and Boussinesq equa- 
tions are derived as special cases of the nonlinear mild-slope equations. Then, 
a numerical model is developed for fully-nonlinear wave refraction and diffrac- 
tion on the basis of the nonlinear mild-slope equations. The model is verified 
through comparison of numerical results with theoretical and experimental re- 
sults. Finally, effect of nonlinearity on wave diffraction through a breakwater 
gap is discussed. 

1     Introduction 

Mild-slope equation derived by Berkhoff (1972) is used to predict transformation 

of linear waves due to refraction and diffraction. Boussinesq equations were derived 

for analyzing transformation of weakly-nonlinear and weakly-dispersive waves, and 

modified versions have been proposed to apply them in deeper water. However, 

waves are strongly nonlinear especially in very shallow water. 

Nonlinear mild-slope equations are among the equations which were derived re- 

cently to analyze fully-nonlinear and fully-dispersive wave transformation. In de- 

riving the equations, the velocity potential is expanded into a series in terms of a 

given set of vertical distribution functions and then substituted into the Lagrangian 

defined by Luke (1967). The equations are obtained by applying the variational prin- 

ciple to the Lagrangian. No assumptions are made in the derivation so that they are 
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applicable even to strongly nonlinear and strongly dispersive waves and more general 
than any other wave equations derived so far. In the present study, the mild-slope 
equation, nonlinear shallow water equations, and Boussinesq equations are derived 
as special cases of the nonlinear mild-slope equations. 

Then, a fully nonlinear and fully dispersive numerical model is developed based on 
the nonlinear mild-slope equations to predict wave refraction and diffraction. Linear 
dispersion characteristic of the model is first examined by comparing with the small 
amplitude wave theory. Next, the model is applied to wave transformation due to 
a circular shoal and diffraction through a breakwater gap. These results show the 
validity of the present model. Further discussion is made on the effect of nonlinearity 
on the wave diffraction. 

2    Relation Between Nonlinear Mild-Slope Equa- 
tions and Various Wave Equations 

2.1    Nonlinear mild-slope equations 

The nonlinear mild-slope equations are derived from the Lagrangian, L, obtained 
by Luke (1967): 

*"=r/i£{i+iW>,+i(s),+-}*'M*     (I) 

where 4> is the velocity potential, r) the water surface elevation, t\ and t% arbitrary 
times, A arbitrary area on the horizontal plane, h the water depth, g the gravita- 
tional acceleration, z the vertical coordinate and t the time. To terminate the above 
Lagrangian with respect to (j> and r\ is equivalent to satisfy the Laplace equation, 
kinematic bottom boundary condition, and kinematic and dynamic surface bound- 
ary conditions. 

The vertical distribution of the velocity potential, 0, is expressed as a series in 
terms of a set of vertical distribution functions, Za: 

<Kx, z,t) = £ /Q(x, t) Za(z; h(x)) = fa Za (2) 

where fa are the coefficients to Za and therefore independent of z, and x = (x, y) 
denotes the position vector on the horizontal plane. As is normally the case, the 
expression of Za can include the local water depth /i(x) as a parameter. Substitution 
of the above expression into the definition of the Lagrangian (1) and analytical 
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integration in the vertical direction yields the following expression: 

L[fa,vl= £j[x(fa,V)dAdt (3) 

where 

X(fa,-£T,V: 
dfg     cty, 
dt,71, dt' 

CtfMVfpKVh.) + \DM?{Vh)2 

2Bi0f-rf/3 

and 

rv 
U = j_hz* Zgdz, Bng = r J-h 

i dZa dZa 

dz   dz 
dZ,   CQ, P : 

J-h dh 
Zpdz, 

fit  dZa dZg - fV 

(4) 

(5) 

To terminate the Lagrangian with respect to fa and r/, the following Euler equa- 
tions should be satisfied: 

dfa   ' 

&X 
dr) 

dt 

z dt 

dx + V 

+ V 

dx 

dx 
d(VV)\ 

d(dfa/dt) 

dx 
d(dv/dt) 

(6) 

(7) 

Substituting the definition of Xi Eq. (4), into the above equations and neglecting 
the second and higher order terms in the bottom slope, we obtain the following 
equations: 

ZZ4+V{AapVfp)-Baefp + {Cga-Cag){VU){Vh) + ^ZZU{Vv){Vh) = 0 (8) adt 

9V + Zt 

where 
dt 

dh 

dZ« 1 1 n7V r)7' H71 

Za — za\ 
dZ2 
dz 

dZa 

dz 

0 (9) 

(10) 

Equation (8) is a vector equation with TV components and Eq. (9) is a scalar equa- 
tion, whereas the unknowns are r\ and fa (a = 1 to N). Thus the above set of 
partial differential equations evolutional in the horizontal two dimensions are closed 
if an appropriate set of initial and boundary conditions are given. We call the set 
as nonlinear mild-slope equations (Isobe, 1994). No assumptions other than the se- 
ries expression of the velocity potential are made to derive the nonlinear mild-slope 
equations; therefore the equations include full nonlinearity and full dispersivity as 
long as sufficient number of terms are used in the series. 
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Various wave equations such as mild-slope equation, nonlinear shallow water 
equations and Boussinesq equations are derived theoretically upon ordering nondi- 
mensional parameters. Each ordering results in a specific vertical distribution of 
wave motion. In a sense, ordering and vertical distribution are equivalent, and the 
validity of a wave equation depends on the accuracy of the vertical distribution in- 
stead of the magnitudes of nondimensional parameters used in the assumption. In 
the following, it is shown that various wave equations are derived from the nonlinear 
mild-slope equations by giving a proper set of vertical distribution functions. 

2.2    Relation with mild-slope equation 

The mild-slope equation (Berkhoff, 1972) is a linear refraction-diffraction equa- 
tion in which vertical distribution is expressed by the hyperbolic cosine function. 
Hence we first linearize the nonlinear mild-slope equations (8) and (9): 

Z°^t + V(A^Vj» - B^fp + {C°pa - C°ap)(Vf0)(Vh) = 0 (11) 

gr, + Z^ = 0 (12) 

where the superscript ° denotes the quantity evaluated at the mean water level 
instead of the water surface. Next we express the velocity potential by only one 
vertical distribution function of hyperbolic cosine type: 

t(x,z,t) = f(*,t)Z(z) (13) 

cosh &(/» + *) 
coshfeft, 

where k satisfies the linear dispersion relation. Then, Eqs. (11) and (12) become 

| + V (^V/) + I [\?CC9 - <r2) / = 0 (15) 

9V + ft=0 (16) 

Eliminating r] from the above two equations, we obtain the following time-dependent 

form of the mild-slope equation: 

V(CCsV/) + (fc2CC,-<r2)/-0=O (17) 

If we assume a sinusoidal oscillation as: 

-icri / = !e'wt (18 
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we finally obtain the mild-slope equation: 

V (CCgVf) + k2CCj : 0 (19) 

Equations for refraction and diffraction of linear random waves are obtained by 
taking multiple components in Eqs. (11) and (12). The vertical distribution functions 
are defined as 

coshka{h + z) 
Za cosh kah 

l = gkat&nhkah 

Then, Eqs. (11) and (12) become 

— + A°a/3V
2fi3 - B°pfp = 0 

dt 

/3=1   Vl 

where 

A° 

K ••>(> 

9 ka     kp 

1   2 -cana 

Da(3 — 

(   •.   13-2 _ £.2 _2 

9       kl 
1 

Kg 

9 
<ra(l-na) 

(«//?) 

(« = /3) 

(20) 

(21) 

(22) 

(23) 

(24) 

From Eqs. (22) and (23), r) can be eliminated to yield 

1 d2U 
y 3=1 ul 

(25) 

By assuming progressive waves with the angular frequency a and wave number k: 

Equation (25) becomes 

fa 

£w   ^ 

„i(kx-«) 

&  Z-i Aap 

(26) 

(27) 

To have a nontrivial solution, k is determined as an eigenvalue for a given a. It 
can easily be proved that k = ka for a = aa, and therefore the dispersion relation 
is exactly satisfied at the frequencies aa (a = 1 to N). This suggests that the 
dispersion relation is accurately satisfied even if the frequency is not equal to either 
of the selected frequencies. Therefore, transformation of random waves with a wide 
spectrum can accurately be calculated by Eqs. (22) and (23). 
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2.3 Relation with nolinear shallow water equations 

In the nonlinear shallow water equations (Stoker, 1957), vertical distribution 
of the pressure is hydrostatic and that of the horizontal water particle velocity is 
uniform. Therefore we take one component of the vertical distribution function 
which is uniform: 

Z = 1 (28) 

Then, the matrices Aap, Bap and Ca$ defined by Eq.  (5) have one component, 
respectively, as 

A=--h + r],    B = 0,    C = 0 (29) 

and the nonlinear mild-slope equations (8) and (9) become 

^ + V[(/H-t/)V/]=0 (30) 

9V + % + \(V.f)2=0 (31) 

By rewriting the above equations in terms of u: 

u = V0 = V/ (32) 

the nonlinear shallow-water equations are obtained: 

|[+V[(ft + r/)u]=0 (33) 

^ + (uV)u + 9Vr/ = 0 (34) 

2.4 Relation with Boussinesq equations 

Since the vertical distribution of the horizontal water particle velocity in the 
Boussinesq equations is expressed by the linear combination of uniform and parabolic 
components, the following two vertical distribution functions are employed: 

Zl = l,    Z2=
{-^±?L (35) 

Then, the nonlinear mild-slope equations (8) and (9) become 

^ + V 
dt 

3 

(fc + l)V/1 + £±£-VA (h + y)2(h~2V) 
3h? 

(V/2)(Vh) 

^i^/a(Vv)(Vfc) = 0 (36) 
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(fl + T))2 dv 

ft2 dt 
+ V 

3ft2 5ft4 

4(ft + 7?)3 

3ft4 /a 

(ft + „)*(ft - 2,) (v/i)(v/j) _ 2(ft+^/2(v??)(v/i) = Q    (3?) 
3ft3 ft5 

„     ,   dh      {.h + rjfdh     If (ft + r?)2       I2     1 f2(ft + ^)    ^2 

2(/i+^-/2(v/1+^#v/a(vft)=o 
ft3 ft2 (38) 

The assumption of O [H/h] ~ O [(ft/L)2] (if:  wave height, ft:  water depth, L: 
wavelength) leads to the following ordering: 

Vft~0[Ve],    v~/i~0[e],    /2~0[e2] 

By considering the above ordering, Eqs. (36) to (38) are simplified as 

(39) 

%+* 
(ft + ^)V/! + ^V/2 + ±(V/2)(Vft) = 0 (40) 

dt [H -^-|(WO(Vft) = o (41) 

-+f+f + ^>' = ° (42) 

Then, because 

„,      „.   ,   (ft + z)2     ,      2z{h + z) 
u = V^ = V/i + ^—~-Vf2 ^3 /2Vft (43) 

L ,«v/ i+\vh4 - k^h (44) 

Equations (40) to (42) are combined to yield the Boussinesq equations (Peregrine, 
1967): 

dt 
+ V [(ft + »/)u] = 0 

du    , _        „ ft2 d „ ,„ ,     /i 9 „,„.,_., 
- + (uV)u + ^ = --^V (Vu) + j-V [V(ftu)] 

(45) 

(46) 

3    Verification of Numerical Model 

3.1     Outline of numerical model 

A finite difference numerical model is developed based on the nonlinear mild- 
slope equations, in which the nonlinear equations are solved by simple successive 

substitution or Newton-Raphson scheme. 
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Non-reflective boundary conditions are installed along the boundaries by intro- 
ducing sponge layers in which an energy dissipation term, D, is added to the left 
side of Eq. (9) (Cruz et al., 1994): 

D = e(x) £ /„ 

where 
e(x) cosh 

(47) 

(48) 
2(sinhr — r) 

£m = e^/h (49) 

and F is the width of the sponge layer, 0 = 1.0 to 2.0 and r = 3. Incident waves are 
given as a discontinuity at the interface between the actual calculation domain and 
sponge layer (Ishii et al., 1996). Still water is the initial condition for all calculations. 

3.2    Effect of vertical distribution functions 

A typical example of sets of vertical distribution functions is a set of polynomial 
functions: 

A (50) 

(51) 

(52) 

(53) 

(54) 

•55) 

(56) 

The coefficients are easily calculated as 

zi = e{a-i) 

h £2(ar+/3)-3 
Aa, 

B«* = 

2(a + 0)-3 

4(a-!)(/?-!) C2'"^'"5 

2(a + 0) - 5 h 

-Da/3 — 

where 

Ca? = 2(« - 1) C2(Q+/J)- 

4(a-l)(/3-l)C2(a+/3)_s 

C + ; 1 
2(a + 0) - 3     2(a + 0)- 4 

C2 C + 
2(a + 0) - 3     a + 0-2     2{a + 0)-5 

h + t] 
C = 

/i 

The above set of polynomial functions gives an accurate linear dispersion relation 
even in deep waters (Isobe, 1994); however hyperbolic cosine functions are expected 
to be more effective in deep water. In the present study, two sets are examined for 
propagation of permanent waves with various water depths and wave heights. In the 
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first set (CASE A), the following two functions are taken as the vertical distribution 

functions: 

Z,{z) = 1,      Z2(z) 

The second set (CASE B) is 

Zt(z) -- 1 + &(*) 
cosh k{h + z) 

(57) 

(58) 
hj   '      -'•'"' cosh kh 

in which Z\ and Zi are expected to become effective in shallow and deep waters, 

respectively. 
Figures 1 to 3 show sample results of 1-D propagation of permanent waves. 

Permanent waves are incident at x/L = 1 and a sponge layer is installed from 
x/L = 3 to 9, and thus the actual region is from x/L = 1 to 3. The distributions of 
•q/Hi and H/Hi (H: wave height and Hj: incident wave height), are shown in the 

CASEIA 

•THEORY!      SPONGE LAYER 
WAVE MIGHT 

1.5 
CASE1B 

5. 

-0.5 

vfeiffijlGHT ^NGE LAYER 

Fig. 1      Comparison between exact and numerical solutions of water surface profile of 

permanent waves (h/LQ = 0.1, Hi/h = 0.3, Hi/L0 = 0.03, {/,. = 16). 
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figure. Since Fig. 1 is for weakly nonlinear waves on an intermediate water depth in 
which h/L0 = 0.1 (h: water depth and L0: deep water wavelength of linear waves), 
the agreement with theory is good for the two sets of vertical distribution functions. 
Figure 2 is for highly nonlinear waves on a shallow water. Nonlinear effect is well 
reproduced by the two sets. However, for deep water as shown in Fig. 3, difference 
in wavelength is signigicant in CASE A, indicating that the dispersion effect is not 
enough. In general, the vertical distribution functions of CASE B are appropriate in 
deep water, whereas those of CASE A give numerical solution even for near-breaking 
waves in shallow water. 

The numerical model of CASE B is applied to wave diffraction due to a circular 
shoal for which an experiment is conducted by Ito and Tanimoto (1972). Figure 4 
shows the bottom configuration in the prototype scale and wave height distributions 
along cross-shore and alongshore directions. The water depth in the uniform region 

-i 1—] 1 1 1 r—i 
THEORY SPONGE LAYER 

Fig. 2      Comparison between exact and numerical solutions of water surface profile of 
permanent waves (ft/L0 = 0.005, Hi/h = 0.3, Hi/£0 = 0.0015, Ur = 450). 
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CASE3A 

CASE3B 

Fig. 3      Comparison between exact and numerical solutions of water surface profile of 

permanent waves (h/L0 = 0.1, Hi/h = 0.5, Hi/L0 = 0.05, Ur = 0.41). 

is 15m, the wave period 5.1s and the incident wave height 1m, resulting in fairy 

strong nonlinearity. Comparison of wave height distribution between calculation 

and measurement indicates the validity of the present model. 

3.3    Effect of nonlinearity on wave diffraction 

Diffraction of waves through a breakwater gap is calculated to elucidate the ef- 

fect of nonlinearity on diffraction. Figure 5 shows an example in which h/LQ = 

0.05, B/L = 2 (B: gap width and L: wavelength of linear waves), and Hi/L0 = 

0.0002, 0.024, and 0.032. As can be seen from comparison among the three figures, 

nonlinearity accelerates diffraction, causing smaller wave height in direct wave inci- 

dence region along y = 0 and larger wave height in the shadow region. This implies 

that the function of breakwater to make a calm region behind it is less effective in 
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y/L 

wave 4L sponge layrr 

V 
rt * A E e 7      8 i 10     11     1 

15m 

-, • 1 r- -i 1 r— 

  CAL.    ^ 

Pig. 4     Comparison of calculated wave height distribution around a circular shoal with 

measurement by Ito and Tanimoto (1972). 
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u ^^^^^^-o.s^   0./ ^,J 

 —0.5— 
^^-^=^^^~-;:___-- 

2- 
—0.4—  

4- ~~     ~~0.3  
^0.2^_ 

6- 

8- J/i/Lo = 0.0002 

till \ 1             1 

(A) 

0 2 4 6 8 10 12 14 

y/L 

6- 

(B) 

(C) 

i r 
0 2 4 6 

1 1 1—T 
8  x/L 10 12 14 

Fig. 5      Effect of wave nonlinearity on diffraction behind a breakwater gap (B/L = 2, 

h/L„ = 0.05). 
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rough wave condition. 

4    Conclusion 

Nonlinear mild-slope equations are derived only by expanding the velocity poten- 

tial into a series in terms of a given set of vertical distribution functions and hence 

include full nonlinearity and full dispersivity. In the former part of the present pa- 

per, it was shown that the mild-slope equation, nonlinear shallow water equations 

and Boussinesq equations can be derived as special cases of the nonlinear mild-slope 

equations. It was also shown that the dispersion relation is accurately expressed by 

linearized forms of the nonlinear mild-slope equations. 

A numerical model is developed based on the nonlinear mild-slope equations. 

The validity of the model is verified through calculations of waves of permanent type 

and wave transformation around a circular shoal. The result for diffraction of waves 

through a breakwater gap showed the larger diffraction effect for the more nonlinear 

waves. This suggests the importance to consider nonlinear effect in the diffraction 

diagrams since they are used to predict tranquility in the shadow region for rough 

incident waves. Systematic calculations will be made in the future. 
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