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Abstract 

In the present study, the transmission and reflection of long waves traveling 
through right-angled channel bends of constant depth and width are investigated by using 
numerical simulation based on the linear and nondispersive long wave equations. The 
present linear results are compared with the results obtained by Shi, Teng and Wu (1998) 
based on the weakly nonlinear and dispersive Boussinesq equations. The objective is to 
examine the difference between linear and nonlinear modeling of long waves propagating 
through curved channels. 

Introduction 

It is of practical interest to coastal engineers to understand how tides and other 
long ocean waves are transmitted and reflected through curved river inlets and harbors. In 
the past, several excellent studies were carried out on the related subject including the 
studies by Rostafinski (1976) on long acoustic waves in curved ducts, by Webb and Pond 
(1986) on Kelvin waves in channel bends, and by Kirby, Dalrymple and Kaku (1994) on 
short water waves through wide channel bends. Most of the previous studies were based 
on the linear wave theory and focused on waves propagating through smoothly curved 
channels, except in Miles' (1947) pioneer study where analytical solutions were obtained 
for linear acoustic waves traveling through sharp-cornered 90°-bends. Miles' solution is 
valid for long waves propagating in relatively narrow ducts whose width is less than half 
the wavelength. 

In recent studies by Shi and Teng (1996), Shi, Teng and Wu (1998), the previous 
analytical studies were extended to investigate the propagation of a solitary wave through 
both smoothly curved and sharp-cornered 90°-bends by using numerical simulation based 

1 Researcher, Environmental Fluid Dynamics Research, Jamesburg, NJ 08831, USA. 
2 Associate Professor, Department of Civil Engineering, University of Hawaii at Manoa, Honolulu, HI 

96822, USA. 

433 



434 COASTAL ENGINEERING 1998 

on Wu's (1981) weakly nonlinear and dispersive Boussinesq equations. Solitary waves 
propagating through various narrow and wide channel bends were studied. Two 
parameters, namely, the bending curvature and the ratio of channel width b to effective 
wavelength Xe, were found to be the dominant factors that affect the transmission and 

reflection of a solitary wave through curved channels. For solitary waves traveling 
through sharp-cornered 90°-bends, the transmission (reflection) coefficient, i.e., ratio of 
the leading transmitted (reflected) wave amplitude along the channel centerline to the 
initial wave amplitude, was found to depend on a single dimensionless parameter, 
namely, blXe. Quantitatively, the transmission (reflection) coefficient was found to 

decrease (increase) as blXe increases. Based on the numerical results, empirical power 

laws for predicting the transmission and reflection coefficients as functions of bl Xe were 

obtained. For solitary waves traveling through smooth channel bends, the initial wave 
was observed to be almost completely transmitted in both narrow and wide bends with 
little backward reflection. 

In the present study, the same cases studied in Shi, Teng and Wu (1998) will be 
revisited by applying the linear nondispersive long wave equations. The objective is to 
investigate the difference between linear and nonlinear modeling of long waves 
propagating through channel bends. 

Governing Equations 

In the recent study of Shi, Teng and Wu (1998), the numerical simulation of long 
waves propagating through curved shallow water channels of constant depth was based 
on the generalized weakly nonlinear and dispersive Boussinesq model (i.e., the gB model) 

£t+V-[(h + CW<l>] = 0 (1) 

^+i(V0)2+C-yV2^=O (2) 

where £ is the wave elevation relative to the unperturbed water surface, h (=1) the water 
depth, <f> the depth-averaged velocity potential, t time, and V = (dx,dy) with x,y 

being the spatial coordinates in the longitudinal and lateral directions, respectively. All 

the variables are in dimensionless form, with length scaled by h, and time by ^hl g . 

The boundary conditions were unperturbed water surface at x = +°°, and zero normal 
velocity at the channel walls. 

In the present study, the following linear and nondispersive long wave equations 

Ct+hV2<l> = 0 (3) 

<Pt+$=0 (4) 
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are applied along with the same boundary conditions as described above. 

The long waves studied are solitary waves whose initial wave profile and speed are 
given by (Teng 1997, Teng and Wu 1992, Shi, Teng and Wu 1998): 

S(x,t)=    ^ch2f*-*o-C0 (5) 
1 + atanh  p(x-x0 -ct) 

6.(1 + 0:)    [(1 + a) ln(l+ «)-«][ (6) 
a2 (3 +2a) J 

where a is the wave amplitude, /3 = [3a/ 4(1 + 0.68a)]1'2, c the wave speed, and x0the 

initial wave position. Here the effective wavelength Xe of a solitary wave is defined as 

the wavelength within which the wave elevation f is greater than 1% of the amplitude 

a. Based on (5), Xe can be calculated by 

3   -h   (l + 0-01«)'/2+0-99'/2 m 

<~p        (0.01 +0.01a)1'2 (j 

Numerical Results 

In Shi, Teng and Wu (1998), the Boussinesq model (1), (2) was solved by using 
an iterative predictor-corrector finite difference scheme (Wang, Wu and Yates 1992) to 
simulate the propagation of solitary waves through 90°-channel bends. The numerical 
results for solitary waves traveling through sharp-cornered 90°-bends revealed an 
interesting phenomenon that in a narrow channel bend, the initial wave is almost 
completely transmitted with little reflection, while in a wide channel, the amplitude of the 
reflected wave becomes much greater than the transmitted wave. It was also found that 
the transmission and reflection coefficients depend on only one dimensionless parameter, 
namely, the ratio of channel width b to wavelength Xe. This implies that, when studying 

long wave transmission and reflection through channel bends, whether a channel is 
"wide" or "narrow" is judged by comparing the channel width with the wavelength, 
rather than with the water depth. Based on the numerical results, empirical power laws for 
predicting the transmission and reflection coefficients through sharp-cornered 90°-bends 
were obtained as 

aT     f 1, 0<blX<Q.2 

a      l0.28(fo/Ae)"
a72,   0.2<b/Pie<l.O 

aJ_=rl.l9(ft/A,)M,     0<b/Xe<0.4 

a     l0.58(*/le)
014,   0.4<b/Xe<l.O 
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where a is the initial wave amplitude, and aT and a„ are amplitudes of the leading 
transmitted and reflected waves, respectively. For solitary waves traveling through 
smoothly curved channel bends, it was found that the waves are almost completely 
transmitted with little backward reflection in both narrow and wide channels. 

In the present study, the linear and nondispersive long wave equations (3), (4) are 
solved by using the 4th-order Runge-Kutta scheme. The scheme is first tested on solitary 
waves traveling in a straight channel where closed-form solution (5), (6) exists. Our 
results show that after a solitary wave travels for about 60 water depths, the amplitude 
changes by only 0.1%. The accuracy of the numerical simulation is also examined by 
monitoring the mass and energy conservation at each computational step. Both the 
Runge-Kutta scheme and the scheme by Wang et al. (1992) are found to conserve mass 
and energy accurately. In all the simulations, including the cases involving waves 
traveling through sharp-cornered channel bends, the maximum errors in mass and energy 
conservation are 1.2% and 4.2% with Wang et al.'s scheme in solving the nonlinear 
Boussinesq model, and 2.2% and 1.9% with the Runge-Kutta scheme in solving the linear 
wave equations. 

Numerical results of a solitary wave of initial amplitude a= 0.3 propagating 
through a sharp-cornered 90°-bend of width b = 5 are shown in Fig. 1 (linear results) and 
Fig. 2 (nonlinear results). Figures 1 (a) and 2 present the two-dimensional wave field at 
different time instants based on the linear and nonlinear results, while Fig. 1 (b) and (c) 
show the detailed comparison between the linear (dashed line) and nonlinear (solid line) 
results for transmitted and reflected wave profiles along the channel centerline. From 
these results, we observe that, the Boussinesq model can predict more detailed (e.g., Fig.l 
(a) and Fig.2, near the sharp corner) and more realistic (e.g., Fig.l (c), the transmitted 
wave profile) wave features than the linear wave equations. In addition, there are some 
quantitative differences between the two models in predicting the transmitted and 
reflected wave amplitude and speed. The linear wave equations predict a slightly smaller 
(larger) transmitted (reflected) wave amplitude, and a slower speed which is expected. 
Despite these small differences, the linear and nonlinear wave models are seen to be 
fundamentally consistent with each other in predicting the transmission and reflection of 
solitary waves propagating through sharp-cornered channel bends. This consistency is 
further shown in Fig. 3 (a) and (b) where numerical results from fifteen simulations 
involving different initial wave amplitude and different channel width are plotted 
together. In this figure, the connected solid and dashed lines are based on the least-square 
fitting of the numerical data points, and the solid line also represents the empirical power 
laws given by (8) and (9). We can see that, similar to the nonlinear results based on the 
Boussinesq model, the data points for the transmission (and reflection) coefficient based 
on the linear and nondispersive model (3) and (4) also fall along one curve when plotted 
against   b I Xe,   hence  revealing   the   same   similarity  parameter   that   governs   the 

phenomenon. 
The linear results for a solitary wave of initial amplitude a = 0.3 traveling through 

a smooth 90°-bend of width b = 5 are presented in Fig. 4 (a) and (b). Comparing with the 
nonlinear results (Shi, Teng and Wu 1998, Fig.9 (a), p. 171), we find that the nonlinear 
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and dispersive Boussinesq model again provides more detailed wave features, such as the 
lateral wave variation in the trailing region, than the linear model. In addition, based on 
the linear equations, the back of the transmitted wave is slightly steeper than the front of 
the wave, which is less realistic than the wave profile predicted by the Boussinesq model 
(see comparison in Fig.4 (b)). Nevertheless, both models predict that for long waves 
traveling through smoothly curved channels, the initial wave is almost completely 
transmitted with little backward reflection. In addition, the values for the leading 
transmitted wave amplitude predicted by the two models are quite consistent. 

In our numerical simulation, the wave speed based on both models is calculated. 
Here we define the average wave speed as the total longitudinal distance traveled along 
the channel centerline divided by the corresponding travel time. Detailed numerical 
results on the wave speed of an initial solitary wave of a= 0.3 traveling in different 
curved channels are presented in Table 1. These results show that the linear waves travel 
with critical wave speed, slower than the nonlinear waves, which is consistent with the 
wave theory. 

Channel 
Width b 

Linear 
Wave Speed 

Nonlinear 
Wave Speed 

Smooth 90°-Bends 1 0.998 1.133 
5 0.980 1.122 
10 0.940 1.093 

Sharp-Cornered 90°-Bends 1 0.996 1.154 
5 1.006 1.142 
10 1.092 1.183 

Table 1. Comparison between wave speeds based on the linear and nonlinear models 

Conclusion 

For long waves propagating through smooth and sharp-cornered channel bends, it is 
found that the weakly nonlinear and dispersive Boussinesq model and the linear 
nondispersive long wave equations are fundamentally consistent with each other in 
predicting the amplitude of the leading transmitted and reflected waves. Beyond this 
fundamental consistency, we also find that the Boussinesq model can predict slightly 
more detailed wave features and more realistic wave profiles. 
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Figure 1. Propagation of a solitary wave of initial amplitude a = 0.3 through a sharp- 
cornered channel bend of width b = 5. (a) wave field at different time instants based on 
the linear nondispersive wave equations; (b) and (c): comparison between the linear 
(dashed line) and the nonlinear (solid line) results for the reflected and transmitted wave 
profiles along the channel centerline. 
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Figure 2. Propagation of a solitary wave of initial amplitude a = 0.3 through a sharp- 
cornered channel bend of width b = 5 based on the weakly nonlinear and dispersive 
Boussinesq model. 
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Figure 3. Plots of (a) transmission coefficient and (b) reflection coefficient v.s. the ratio 
of channel width b to effective wavelength Xe for solitary waves propagating through 

sharp-cornered 90°-bends. 
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Figure 4. Propagation of a solitary wave of initial amplitude a = 0.3 through a smooth 
channel bend of width b = 5. (a) wave field at different time instants based on the linear 
nondispersive wave equations; (b): comparison between the linear (dashed line) and the 
nonlinear (solid line) results for the transmitted wave profiles along the channel 
centerline. 




