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ABSTRACT 
A method simply treating the governing equation for Z-D wave-motion is pro- 

posed in this paper. The Enter's velocity in whole depth can be directly calculated 
with this method if the wave free surface is given. For the linear waves the wave 
surface is determined from given directional spectrum (.Yu. et al. 1991) or other 
wave surfaces at near locations with an inversion method proposed in this paper. For 
the nonlinear waves the wave surface can be determined with the method proposed by 
Dommermuth and Yue (1987). These methods proposed by authors are tested and 
verified •with numerical simulation > model test or field observation data. 

1. INTRODUCTION 
The sea wave is a three-dimentional random process. An understanding of the 

kinematics of waves is critical to the understanding of many processes in the sea 
from the forcing on structures to nearshore sediment transport. In general the ve- 
locity field of sea waves is three dimentional, random, and nonlinear. Due to the 
complexity of this problem, some scientists only considered its three-dimentionality 
and random property and the direct linear superposition method was used to calcu- 
lated the velocity. Others emphasized its nonlinearity and the higher-order unidi- 
rectional wave theories were used. Forristall et al (1978) showed that even linear 
wave theory with directional spereading of wave energy predicts storm wave kine- 
matics of the subsurface flow better than higher-order unidirectional wave theories. 
But the direct linear method greatly overestimate crest velocities near the surface 
(Donelan. 1992). Some methods, for example the coordinate stretching method 
and the extrapolation method were proposed to correct the direct linear method and 
the results of former are smaller than that of the latter. The measured kinematics 
in the crests of random waves is bounded by these two modified linear models 
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(Roderbusch and Forristall, 1982). More recently, Donelan (1992) proposed a 

new method based on the linear superposition of a sum of freely propagating wave- 

trains and assume that shorter waves ride on longer ones. But the effect of nonlin- 

earity is not considered yet in this method. 

Methods used for the calculation of velocity field in irregular waves fall into 

two general categories, global and local approximations. The local method attempt 

to find separate salutions to the governing equations that fit sequential windows in 

time of the given record, rather than attempting to find a single solution that fits 

an entire record. The amount of computation work is large. 

Prislin and Zhang (1997) presented a newly-developed deterministic method- 

ology for decomposition of nonlinear short-crested irregular waves up to second or- 

der in wave steepness into a characteristic set of free-wave components. Based on 

the decomposed free-wave components, the Directional Hybrid Wave Method 
(DHWM) allows for prediction of wave properties other then measured and at dif- 

ferent locations including wave crests. 

Dommermuth and Yue (1987) developed a numerical method for modelling 

nonlinear gravity waves which is based on the Zakharov equation/mode-coupling 

idea but is generalized to include interactions up to an arbitrary order M in wave 

steepness. This method were used to calculate the deformation of a travelling wave 

(Dommermuth, et al. 1987). In this paper, an inversion method is proposed to 

determine the wave surface from other wave surfaces at near locations, then it is 

used as the boundary condition to derive the wave kinematics in 3-D random waves 

with Dommermuth's idea. 

2. NUMERICAL INVERSION OF 3-D RANDOM WAVE SURFACE 
The single direction per frequency model (Yu et. al. 1991) is used to describe 

the 3-D random wave surface at point i.x,y) •. 
M      1 

ri(x,y,t) = 2 J]a»"C0SCa'»»* + k„i(xcosd,- + yumd,) + e„,0 (1) 

aml = \/2S(iom,dJd<omddl (2) 

where M and N are the division numbers of frequency and direction respectively; 

amii ">m<i kmi and e„l( are amplitude, frequency, wave number and random initial 

phase of the component waves; S(e«,#) is the directional spectrum. 

Usually, if the directional spectrum is given, the 3-D wave surface can be ob- 

tained with Eqs. (1) and (2). It also can be measured. But sometimes we can not 

measure the wave surface at structure position. In this case, an inversion method is 

proposed to determined the wave surface from other wave surfaces at near loca- 

tions. The wave surface can be expanded as a Fourier Series: 
j 

r;(.x,y,0 = YJ (Afioscoj + B^sin^) (3) 

where Aj and Bj are the Fourier coefficients. If the length of the wave data is L, 

then 



382 COASTAL ENGINEERING 1998 

9    T-— 
A, = Y^rjax,y,t^cos(Ojtidt 

2   l 

Bj = Y~5ijV(.x<y'ti)sma)jtldt 

Eq. (3) can be rewrite as 

y(u:,y,0 = ^afios((Ojt + ft) 

(4) 

(5) 
aj = VA? + -81 
ft = arctan(- Bj/AJ 

Comparing with Eq. (1) we can get the total phase 
ft = kjCxcosdj + ysindj) + ej 

If the wave surfaces* y(x,y,0 are measured at I points and 7^3, the total phase 
for each surfacr can be obtained 

ft = kjCxiCosdj + yisinffj) + es 

ft = kjdx2cosdj + y2sindj) + e,- 
(7) 

ft = kjixfiosdj + yjsm0j) + £;, I > 3 . 
In these equations, only the directions, 0j and 
the initial phase e,- of component waves are un- 
know and they can be obtained from any two e- 
quations in principle. For example, from points 
1 and 2 (Fig. 1) one can get 

-«1 6Jt = a12+cos 
hDv. 

(8) 

But in Eqs. (5) and (8), both arctangent and 
arccosine are multi-value function.   Moreover,- 
some  component  wave's directions are  nearly 
parallel to the line 1-2 and the Eq. (7) for points 
1 and 2 is invalid for these component waves. 
Therefore, at least three measured points are 
necessary.  For each pair of measured point, two 
equations form a simultaneous equations and the values of Oj and Sj can be obtained 
for each component wave except the invalid condition. In general, for n pairs of 
measured points. 

Fig.l 

>Z (9) 

Then the wave surface at any point can be calculated with Eq. (1) if the wave field 
is homogenous. 

The numerical simulation, the physical simulation and the field wave data are 
used to examine this method. Five wave gages of vertical line type arranged in T- 
type array (Fig. 2a) were used in the field observation (Liu and Yu, 1995). The 
wave data were recorded simultaneously for 1200 seconds every hour and the time 
interval, At is 0. 25s. Fig. 2(b) shows an example of the comparison of wave sur- 
faces between field data at point 1 and the numerical inversion result form these at 
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points 2,3,4 and 5. It shows that this method is successful and its precision is de- 

pendent on the length of data, NAt, the distance, R from measured points to pre- 

dicted point and the spatial homogeneity of wave field. According to the numerical 

simulation result, when R/L, = l. 0, number of points TO2000, when R/L,= 

10, W>3000 and when K/L, = 20, N>4000, where L, is the significant wave 

length. But in nature, the wave field is not exactly homogenous, so the validity of 

this method is limited to a few wave length from the measurement sites. 

(a) wave gage arrary 

1*' 

4* 6.96m 3*4. 9m5» 

Fig. 2    A comparison of wave surfaces between field 

data ( ) and numerical inversion ( ) 

3    CALCULATION OF VELOCITY FIELD 
3.1 Governing Equations 

The irrotational wave motion of a homogeneous, incompressible and inviscid 

fluid is considered. The origin is located at the mean water level and the vertical 

axis z is positive upward. The wave flow can be described by a velocity potential jS 
Cx,y,z,t) such that within the fluid j> satisfies Laplace's equation: 

V        3„2 ^ gy2 T 0 a*2 ' ay ' a^_u (10) 

x,(y,i) <x<oo, —oo<:y<oo.— d(x,y) < z < )?Gr,;y,J) 

where xXy,t) denote the coordinate x of boundary between water and land at time 

t. rj(x,y,0 is the free surface of wave. For determining the velocity potential, the 
following boundary conditions should be satisfied 

Kinematics condition at bottom 

37 
Kinematics condition at free surface 

dt + 3x dx 

= 0 

dz «-? dy dy 

Dynamic condition at free surface 

^-*°° or y-~°° or z*-°o, <f>(x,y,z,0 and r)(xfy,t) are finite. 

(11) 

(12) 

(13) 
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Initial condition 

V(x,y,0 |,_0 = 7oCr.:y) (14) 
S7j>(.x,y,z,t) |,_0 = Vg(x,y,z) (15) 

where V g(x,y,z) denote the initial velocity potential and it should satisfy the ir- 
rotational condition. It is very difficult to solve Eq. (10) directly to study the wave 
kinematics and some simplification is necessary. 
3. 2 Simplified Treatment Method 

Dommermuth and Yue (1987) presented an approximate model for wave mo- 
tion. The velocity potential at wave surface is defined as (Zakharov.  1968) : 

fi(.x,y,0 =t(.x,y,vtefyft),fi (16) 
where, z=ij(.x,y,i) denotes the free surface. In terms of f', the kinematic and 
dynamic boundary conditions on the free surface are respectively 

Vt + V,s«' • V,7 — (1 + Vrf - V,7)ftO>:y,'?,i) = 0 1 

#  + gV +   \Vr?   '   VrP  -   j(l   +   VrV  '   Vf?) # (* ,.V, V >0   =   0   j     ^ 

where f— {x,y} is the position vector, Vf = l ^r>5~   denotes the horizntal gradi- 

ent. 
The initial conditions at wave surface are 

Kx,y,0~) ='tfiCr,:y) (18) 
7(x,;y,0) =q2(x,y) (19) 

where ql(.x,y~) and q2(x,y) are given. 
If the wave elevation, y(x,y,t) and the velocity potential at free surface, ji' 

(x,y,T),ti are expressed with the Fourier integral which satisfy the continuous e- 
quation and the bottom boundary condition, Eq. (17) is expressed as the equations 
concerning Fourier amplitude and these equations are solved by a perturbation 
method, whose key idea is that 4>x(x,y,rj,t) is to be expressed as the function of j> 
and ij. Dommermuth and Yue (1987) assumed that j> and r] are 0(e) quantities, 
where e, a small parameter, is a measure of the wave steepness. We consider a 
consistent approximation up to and including a given order M in e, and write j* in a 
perturbation series in e. 

The surface vertical velocity 

*.<*.>.i.o = EE^ra) ^^1        (2W 
Substitute (20) into (17) and yields the final result 

V. + V,*V,7 - (1 - V* • V^lfslSrW 3g+1^'0)J- 0 

# + 7 + \v,f • V# - \{\ + V?7 • V,7) 

(ijs^s^^s^r-o 
(21) 

Where ( )• denote a quantity of 0(e"), #"° is called modal amplitude, <fi„(x>y, 
0) is given as follows; 
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ift.= 
cosh^Cz -f- rf)e'V 

(22) 
cosh£„c? 

where kn is the wave number of nth characteristic wave. The modal amplitude, <j>im) 

it) can be treated as the function of ft and 7 and can be obtained by solving succes- 
sively at increasing order the following equations 

n 

»-l K-l^! a^ 

OT = 2,3, — ,M 

*) (23) 

Eq. (21) is the generalization to Mth order in wave steepness, e of penturbation e- 
quations. For the finite e» Dommermuth (1987) had proven that \<pn(.x*y>Vm°*^/ 
<pnix,y,r)m,„') | will rapidly increase along with n increasing. It means that the pen- 
turbation equation will exactly consistent coverge to the original equation. 

For treating the three dimentional problem with both nonlinear and random- 
ness the following model are proposed. 
3. 3 Wave Motion Equation under Known Wave Surface 

When the surface elevations of a random wave are known, among two bound- 
ary condition equations at free surface only the potential function j4' is to be deter- 
mined, so we can choice either the kinematics boundary condition or the dynamic 
boundary condition as the boundary condition at known free surface. Thus the 
problem of solving velocity field under known wave surface is transformed into the 
boundary-value problem of Laplace equation in a given area, Xi^Jx^Xjj yi^y^ 
y2j —d^z^r)(x,y) as Fig. 3 shown. 

free wave surface 

Fig. 3    Sketch of computation area 
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In given area, this boundary-value problem can be divided into two parts: 
Part 1. Solve the surface protential function, <j>'(x,y,t) at free surface. Using 

Dommermuth's expression method, substituting (20) into (12), one can get the 
governing equation: 

-IK- 
VJ'* - VA (24) 

Part 2. In the given area, solve the Laplace equaton given as Eq. (10). Their 
boundary conditions are 

At bottom z=—di as same as Eq. (11) 
At free surface z—i), use the results in Part 1. The potential function at sur- 

face is used as the first kind of boundary condition. 
At four profiles of x==xi,x=X2,y = yi and y = yi it is given directly by the 

linear potential function: 

At ,,       VV a"iS cosh£.(z + d) 
«*.,.*.*> - S S ^     coshOW) (25) 

X sin(&>(xcos!?i + ysindi) + <omt + e„,0 
As well know the accuracy of linear theory is enough except at where close free sur- 
face.  If the computation area is large enough, the effect of the linear error on the 
computed results at the center point of this area can be negligible. 

3. 4 Numerical Method 
The governing equation is solved with a finite diference method. Becaused the 

simplified governing equation is very simple, any special treatment is not needed for 
its computation. 
3. 4. 1 Computing potential function at free surface. 

At a given time the wave surface elevation, y(.x,y,t) and the linear potential 
function A'(x,y,i) are given so that the modal amplitude, $"° W of velocity poten- 
tial satisfys the Dirichirt boundary condition. Because the calculation reange is z^ 
0, so the amplitude $"° it) in the range of computational cuboid can be given with 
a pseudospectral method (Gottlieb and Orszag. 1977). The basic of the 
psendospectral method is the Fourier sesies expansion of periodic function and the 
Chebyshev polynomial expansion of a general function and the expansive coeffi- 
cients are obtained with FFT. Here the FFT is done for wave number k (for fre- 
quency in general). In each order of solving proess, the number of k requested is e- 
qual to that of Fourier item. 

For calculate <P,(x,y,t)> considering the nonlinear interaction between the 
component waves of different period, the order of the perturbation, M should be 
four. In this case, from Eq. (20) one can get: 

&(x,y,t) = J^e'^i^CktanhCkJ) + r,k\ + ^tanh(W) + \k$ 
2 

MXiri, *»„U/J, ,/*>   _1_ r>£2  _l_  21 G£„tanha„<2) + rjkl + ^-#tanh (£„rf) } 

+ #« GUanh 0W) + V^J + #4> a»tanh (kj^} (26) 
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Then calculate $' at discrete points with iterative method. 

3. 4. 2 Calculate <j> in the given area. 
3. 4. 3 Matching the boundary conditions 

At the boundary between free surface and four profiles of x=xit x=x2, y= 

yi and y — j2 the boundary conditions are not continuative. Because the potential 

function at free surface is obtained by Eq. (24) and those at four profiles are given 

by linear wave theory.  The Lagrange's insertion formula is used to matching the 

boundary conditions. For the deep water take the bottom bonndary at z= — ~z and 

the potential function is also given by linear theory, it is in harmony with that at 

four profiles. 

3. 4. 4 Solve difference equation group 

The successive overrelaxation (SOR) method is used to solve the difference e- 

quation. The relaxation factor is equal to 1.5. 

3. 5 Reliability Examination of Numerical Method. 
3, 5. 1 Errors due to linear boundary conditions 

A regular wave is considered, its //=15cm, T=l. 5s and depth d=M. 3m. 

Two boundary conditions are artificially constructed, one is a linear boundary and 

at the boundary between wave surface and four profiles, the boundary conditions 

are matching with Lagrange's insertion. Another is taken as ^0(z) • G(z) and the 

definition of G(z) is shown in Fig. 4(a). The computational parameters are pertur- 

bation order M—Z, Fourier trunction number AT =16. Computation area xi = 0, 

x2 = 2. 0m, node spacing Ax=Q. 05m, Az=Q. 01m. Fig. 4(b) shows that the po- 

tential functions $(i,j~) at different depth obtained from linear boundary condition 

are in agreement with that obtained from another boundary condition beyond the 

eighth node. So it is concluded that for calculating the potential function at the cen- 

ter of area 2 X 2m the linear boundary condition is available with enough accuracy. 

(b) 1.2 

1.18 

1.16 

"-1 1.14 
-^ 1.12 
S- 1.1 

"^ 1.08 

Cv 1.08 

a? 1.04 

1.02 

ass 

z 

-  G(z)=1.2 - 

G(z)=l.(T 

\.z/rf= —1.0   Ca; 
. 

)rZ.z/d— — 0. 9 ";" z=d+rj 

f-  
A   ' 

•\r\z/d=-0. 8   •• d 

\z/d= 

A 

\                        1                       t 

0 2 4 6 8 10 12 14 16 18 20 

x/Ax 

Fig. 4 Errors due to linear boundary condition 

3. 5. 2 The effect of perturbation order number M 

Taking M = 1, 2, 3 and 4 respectively calculate the velocity vx in a regular 
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wave as above mentioned at x—\. Om, z/d~—0. 25. As Fig. 5 shows that the ve- 

locity for M=Z is almost the same as that for M=4 and even if M=2 its result is 
acceptable. 

0.2 

0.15 

0.1 

_-   0.05 w 

£ 0 

-0.05 

-0.1 

-0.15 

-0.2 

f\  ""' 

K=Z — 

M«3 — 

KM   

\                   /:           \ 
\                h           X 

\ ;        |    !               j V           // 

^        Time(s) 
;               r   ....   1   ...    r   I   ....    . 

0.5 1.5 2.5 

Fig. 5 Comparison of calculation results with different M for velocity Vx 

3. 5. 3 Comparison between numerical calculation and wave theories 

The linear theory, 2nd Stokes and 3rd Stokes wave theories and the numerical 

method are used to calculate the velocity vx respeitively in a regular wave. The re- 

sults show that at the crest phase the velocity vx calculated by numerical method is 
almost the same as that from 3rd Stokes wave theory. 

3. 6 Velocity Field in 3-D Random Waves—Model Test 

The velocity field in regular wave, unidirectional random wave and 3-D ran- 

dom wave were experimentally studied in the State Key Laboratory of Coastal and 

Offshore Engineering, Dalian University of Technology, China. The wave basin is 

55m long, 34m wide and 1. 3m deep. The multi-directional wave-maker consists of 

70 independent segments of 0. 4m wide. Wave absorbers were placed along the 

basin walls to prevent wave reflection from the walls. A wave gage array consisted 

of 8 X 8 gages was set 6. 5m apart from the wave plate. The gage spacings were 

about 0. 25m. An Acoustic Doppler Velocimeter (ADV) was put near the center of 

the wave gage array to measure three flow velocity components. The data of wave 

elevations and velocities were acquired simultaneonsly by computer. The sampling 

interval was 0. 05s and the data length is 512 — 1024 (regular waves)^ 4096(unidi- 

rectional waves) and 8192 points (3-D random waves). The water depth was kept 

0. 413m. The velocities were measured at Z= — 0. 303m, —0. 196m, — 0. 109m 

and —0. 018m respectively. For the last case, the ADV was out of water at trough 
phase. 

The JONSWAP spectrum, 7=3. 3 and the Mitsuyasu-type spreading func- 

tion, G0cos2'-r-, was used to simulate the 3-D random waves with the Single Direc- 

tion Per Frequency Model (Yu et al, 1991). i7A = 0. 047—0.145m,T«I = l. 09~ 
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1. 88s. The measured directional spectrum was estimated by the Bayesian Approah 
(Hashimoto et al, 1987). The numerical inversion method was used to obtain the 
wave surface at ADV's position from the wave surfaces at 5 near locations. Then it 
was used to claculated the velocities and comparied with the measured ones by 
ADV. 

Fig. 6 shows an example of the comparisom between calculated and measured 
velocity hostories in an oblique 2-D random wave. Two velocity histories are agree- 
able each other. 

Velocity   Vx(m/s) 

-0.2 ' 

calculated 
measured 

70       72      74       767880828486 

time(s) 

Fig. 6 Comparison between calculated and measured velocity 
histories in an oblique random wave 

The example of the compareson between the calculated and measured velocities 
vx, vz in a 2-D random wave at the position z= —0. 018m is shown in Fig. 7. Two 
sets of velocity history are agreeable. But for the trough phase, the ADV is out of 
the water so the measured velocities are equal to zero. 

For the 3-D random waves the example: of the comparison between the mea- 
sured and calculated velocities is: shown in Fig. 8. The wave spreading parameter, 
5=50. The velocities are measured at the position 0. 304m above bottom. Two sets 
of velocity history are basically consistent. In this case the accuracy of velocity cal- 
culation is also dependent on that of the wave surface inversion. 

3. 7 Effects of nonlinearity on velocity 
For the unidirectional wave, the direct linear method and Donelan's linear 

method (1992) are used to calculate the velocities at different depth and their re- 
sults are compared with that by the nonlinear numerical method. Their ratios are 
shown in Fig. 9. The measured results are also shown in this figure by closed cir- 
cles. It is found that when z/d<~0. 25 all of three methods can predict the 
avaible velocities which is close to the measured ones. But when z/d-*0 two linear 
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ass 

CW5 

E 
Qas 

*." 02S 

a« 

aos 

•aos 

 measured - 

—•• calculated 

Fig. 7 Comparison between calculated and measured velocities 
in a 2-D random wave C£f,=4. 88cm, T,= \. 39s) 

mthods over-predict the velocities. For 3-D waves, the general variation tendency 

is the same as for 2-D waves. 
Fig. 10 shows the comparison between calculated and measured velocities v, 

and vy at wave crest for 3-D random wave. The linear method overestimate the ve- 
locities and the nonlinear numerical method predict the velocities closed to measured 

ones. 

4. CONCLUSIONS 
A numerical method calculating the 3-D velocity field under a given random 

wave surface directly by the governing equations is proposed in this paper. It is veri- 
fied with the exprimental study that this methed can predicte 3-D velocities at dif- 
ferent locations including wave crest with high accuracy. The direct linear method 
usually greatly overestimates the crest velocities near the surface. 

The wave surface needed for velocity calculation can be numerically simulated 
from directional spectrum or determined from other wave surfaces at near locations 
with an inversion method proposed in this paper. The inversion method is verified 

with model test and field data. 
The effects of nonlinearity of waves on the velocities at positions near still wa- 

ter level are not negligible. The experimental results show that this effect of 2-D 
waves is more than that of 3-D waves and this effect on vertical component velocity 

is more than that on horizontal component velocity. 
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Fig. 8 Comparison between calculated and measured   velocity histories in 
3-D wave (H,=5. lcm, T,=l. 38s, s=50, c?=41. 3cm, z=-10. 9cm) 
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Fig. 9 Effects of nonlinearity on velocities V, and V, 
CH/d=0. 36, H/L=0.122, 1-nonlinear methods 
2-Donelans 3-direct linear method) 
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H=15.9cm T* 1.41s 

E 

10 

-measured 
o-non linear 
-linear 

15.5 

15.1 15.3 15.5 

time(s) 
Fig. 10 Comparison between calcualted and measured velocities 

vx and vy at wave crest for 3-D wave. 

(d=41. 3cm, z= —1.8cm, H.= 12. 3cm, T.= l. 39s) 
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