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Abstract 

Errors in parabolic equation models (PEM) for wave refraction and diffraction 
are investigated by examining the case of waves propagating over a planar bathymetry 
for which the analytical solution is well known. The models investigated are: i) lowest 
order parabolic approximation (Simple method), ii) Fade approximation and Hi) 
Minimax approximation models. 

Errors in wave heights, wave directions, radiation stresses and resulting 
longshore currents are investigated analytically and by numerical tests using the 
parabolic equation model MIKE 21 PMS. The results indicate that, while the predicted 
wave directions are generally accurate, the wave heights, radiation stresses and 
longshore currents can contain significant errors depending on the parabolic 
approximation used. 

Introduction 

Parabolic equation models (PEM) for wave refraction/diffraction are frequently 
used in coastal engineering practice for the computation of wave parameters, radiation 
stresses and associated wave-induced nearshore currents in coastal areas. The PEM 
approach is attractive since it is computationally more efficient than the complete elliptic 
mild-slope model, and it provides useful engineering results for refraction/diffraction 
problems (in the absence of significant reflection) in the coastal area (Berkhoff et. al., 
1982, Johnson et. al., 1994). 
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The parabolic equation model is derived as an approximation to the elliptic mild 
slope equation (derived by Berkhoff, 1972) governing the refraction, shoaling, diffraction 
and reflection of linear water waves propagating on mildly sloping bathymetry. The 
lowest order parabolic approximation is obtained by assuming a principal wave direction 
(x-direction) and neglecting backscatter. Kirby (1986) extended this approximation to 
allow waves propagating at large angles to the assumed principal direction. Many 
numerical models have been developed based on these approximations. One such wave 
model is the MIKE 21 Parabolic Mild Slope (PMS) model, which is based on the 
equations derived by Kirby (1986). 

As a result of the underlying assumptions, PEM do not exactly reproduce the 
refraction coefficient for waves approaching the coast at an angle. This introduces errors 
in the nearshore wave heights and radiation stresses and, consequently, in the wave- 
driven longshore currents. The magnitude of the errors depends on the type of parabolic 
approximation. 

In this paper, we attempt to quantify the errors and give suggestions for 
minimizing the influence of the errors in real applications. This is achieved by examining 
the simple case of wave propagation over straight and parallel depth contours for which 
an analytical solution exists. 

This paper is broadly divided into two parts. In the first part, the PEM is used to 
derive evolution equations for wave heights and directions over straight and parallel 
contours. This is compared with the analytical solution, and thus the errors in the PEM 
are obtained. In the second part, results of numerical tests using MIKE 21 PMS are 
compared with the analytical solution in order to quantify the errors in the various 
parabolic approximations. Finally, some conclusions are derived regarding an optimal 
PEM for practical situations. 

Parabolic Equation Model 

The starting point for the analysis is the general parabolic equation derived by 
Kirby (1986) for linear waves in the absence of currents. Kirby removed the rapidly 
varying term from the mean free surface potential <j>, to obtain a slowly varying complex 
function A (see Eq. 1), which is used as the primary variable in the parabolic equation 

<j> = A(x,y)eik»x (1) 

In Eq. 1, k0 is a characteristic wave number, typically chosen as the average wave 
number along the y-direction, and x is the principal wave direction. Kirby obtained the 
parabolic equation given in Eq. 2. 
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where 

a, = i p2-P3 + N7T + 
(cg), 
2kc„ 

(3) 

k (4) 

The subscripts x, y respectively represent differentiation with respect to x and 
y, i is the imaginary unit, k is the local wave number, cg is the local group velocity, co 

is the circular wave frequency, p„ P2 and p3 are the coefficients of the parabolic 
approximation, and W is a dissipation term (e.g. bottom dissipation, wave breaking). The 
P-coefficients are given in Table 1 for various parabolic approximations. 

Approximation P, P2 P, 
Simple 1 -0.5 0 
Pade (1,1) 1 -0.75 -0.25 

Minimax 10° 0.999999972 -0.752858477 -0.252874920 

Minimax 20° 0.999998178 -0.761464683 -0.261734267 

Minimax 30° 0.999978391 -0.775898646 -0.277321130 

Minimax 40° 0.999871128 -0.796244743 -0.301017258 

Minimax 50° 0.999465861 -0.822482968 -0.335107575 

Minimax 60° 0.998213736 -0.854229482 -0.383283081 

Minimax 70° 0.994733030 -0.890064831 -0.451640568 

Minimax 80° 0.985273164 -0.925464479 -0.550974375 

Table 1. Coefficients for various parabolic approximations. 

The lowest order parabolic approximation is denoted as the Simple approximation 
in Table 1. The Minimax approximations minimize the error in the wave number over the 
entire aperture width associated with it. However, this does not preclude that the error for 
specific directions (within the aperture width) may be large. 
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Parabolic Equation Model for Straight and Parallel Depth Contours 

The evolution equations for wave heights and directions are derived here for the 
case of straight and parallel depth contours and no dissipation (W = 0). The Cartesian co- 
ordinate system is chosen such that the y-axis is parallel to the coastline. 

The mean free surface potential for plane, progressive waves can be written as: 

<t> = A*(x,y)ei,1J     ; V = Jkcos0 dx+ jksin9 dy (5) 
x y 

where A*(x,y) is the amplitude function (equals half of the wave height H) and ^F is the 
phase function. Combining Eqs. 1 and 5, the slowly varying mean surface potential can 
be expressed as: 

A = A*(x,y)ei(,f-k»x) =H(x,y)ei(T^» (6) 

Thus, the derivatives in Eq. 2 can be found as a function of A*(x,y) and T. For example, Ay 
is obtained as: 

Ay={A*(x,y)-i^y+A;}ei(l,'-k»J<) (7) 

For straight and parallel depth contours, the wave height H, wave number k, phase 
speed c, and group velocity c8, are all constant along the contours (y-direction). Introducing 
these constraints and rearranging, Eq. 2 gives: 

\cs)K    ,       .  •>„    k2sin20     /     - 
 --key, sin 0 cr,lcc„ 
2c.. ' coc.       2V   g' 

ji((3,k-k0)- 

A 
-ka, sin2 9 

^-A (8) 

Using Eq. 6, an expression for Ax/A in terms of the wave height and phase can be 
written as: 

^ = ^ + i(Yx-k0) = ^ + i(kcose-k0) (9) 

Equating the real and imaginary parts of Eq. 9 with those of Eq. 8, the following evolution 
equations for wave height H and direction 9 are derived from the PEM 

Hx     (
c

g)x     „n        S2/k2       k      n ^L + _^JL_2p . i. = o (10) 
H       2c 3 (l + p3S

2 /k2) k ^    ' 
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fa     . o   c2  ,,.2\ 

\ 

p, +p,S2/k2 

l + P3S
2/k2 (H) 

J 

where S = k sin 6. 

Exact solution for straight and parallel depth contours 

The evolution equations for the exact solution are derived from SnelPs law and 
the conservation of energy flux. According to Snell's law, k sin 9 = constant = S . This 
can be alternatively written as: 

cos 9 = 

Eq. 12 may be accurately approximated as (see Figure 1): 

"P,+P2S2/k2 

l + (33S
2/k2 

(12) 

(13) 

6 (deg) 

-Exact    •    Simple    A    Minimax 60    •    Minimax 10 

Figure 1. Approximate expressions for cos 9 using (3 coefficients for Simple, 
Minimax 10° and Minimax 60° PEM. 

The conservation of energy flux equation is written as: 

H"c„ cos9 =constant (14) 

Differentiating Eq. 14 with respect to x, the exact evolution equation for the wave 
height is obtained as: 
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2k + ^+(E2^k = 0 (15) 
H       2cg       2 cos 9 

Inserting Eq. 13 (using Minimax 60° coefficients, indicated by *) into Eq. 15, an 
almost exact evolution equation (Eq. 16) for wave height is obtained. 

HX ] (c,), t   P:P; -P;      s2/k2    kx _Q 

H    2cg    (p; + p;s2/k2)(i + p;s2/k2) k 

Eq. 16 can be readily compared with the corresponding evolution equation from 
the PEM, Eq. 9. 

Errors 

Since Eqs. 11 and 13 are identical, it is clear that the errors in wave directions are 
small in PEM, as long as Eq. 13 is a good approximation to Eq. 12. This covers a wide 
range of directions (as shown in Fig. 1), even for the lowest order approximation. Thus, 
calculated wave directions from PEM would be generally accurate. 

Comparing Eqs. 10 and 16, it is obvious that the PEM evolution equation for the 
wave height is different from the analytical solution, resulting in errors. 

In order to relate the errors to physically meaningful properties such as the 
shoaling coefficient Ks, and refraction coefficient K,., the wave height at an inshore 
location is written as: 

H = H0KsKr (17) 

where H0 is the wave height at an offshore location. Differentiating Eq. 17 with respect to 
x and dividing through by H = H0KsKr gives: 

ik_^»_^i = 0 (18) 
H      Ks       Kr 

Comparing Eqs. 18 and 15, it is clear that the second term in Eq. 15 (and in Eqs. 
10 and 16) is related to the shoaling coefficient, while the third term is related to the 
refraction coefficient. Thus, while the shoaling coefficient is exactly reproduced in PEM, 
the refraction coefficient in PEM contains some errors. The refraction terms in Eqs. 10 
and 16 are reproduced below: 

K, 
K 

= Jh^LK (19) 
PEM   i + p3s

2/k2 k 
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K. 

K, 
(P;-P;P;)    s2/k2   k^ 

(p;+p;s2/k )(i+p;s2/k2) k 
(20) 

For waves approaching perpendicular to the coast (9 = 0), S = 0, and both 
refraction terms are zero. Thus, in this special case, the wave heights in the PEM are 
calculated correctly, since there is no refraction. The same is true for constant water depth 
where kx= 0. 

It is also seen that the refraction term in the parabolic equation model is 
identically zero for all angles if the Simple approximation is i led, since P3 = 0. Thus, 
the Simple approximation does not account for refraction effect? at all. 

For oblique incidence (and varying depth), we define X as the ratio of the 
refraction term in the PEM to that in the exact solution. 

(p;+p;s2/k2)(i + p;s2/k2) 
P3   P;-P;P;   (i+p3s

2/k2) 
(21) 

The ideal situation is X = 1. This corresponds to the case where the refraction term is 
exactly reproduced in PEM. For X < 1, the refraction term is underestimated in PEM (i.e. 
not enough refraction), while for X > 1, the refraction term is over-exaggerated (i.e. too 
much refraction). In the case of the Simple approximation, the refraction term is not 
reproduced at all, i.e. X=0. In Figure 2, (X -l) is shown as a function of wave direction 0 
for various parabolic approximations given in Table 1 (except Simple). 

10      20       30       40      50       60       70      80       90 

 pade 

: minimaxlO 

 minimax20 • 

 x minimax301 

 5K__minimax40 

,     minimax50: 

 u minimax60 

 e__Minimax70 

___»__ minimax80 

Figure 2. Error in the refraction term as a function of incident wave 
direction for various parabolic approximations. 
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It is seen from Figure 2 that the Pade approximation gives the minimum error for 
small angles of incidence, 0° to 20°. For larger angles, the Minimax 50° or Minimax 60° 
give the minimum error on average. 

Using Eq. 18, we write: 

(K,V 
Kr / exact 

(K,), ] 
Kr / exact 

+ x (22) 

(23) 

Using Eqs. 22 and 23, the error in wave height obtained with the PEM at a 
distance Ax from the offshore location is obtained as: 

**Ax,PE       *^ Ax .exact = (A.-l)H0Ax- (24) 

The refraction coefficient Kr = ^/cosOj/cosO,) , where 9; is the inshore wave 
direction which decreases towards the shore (with increasing x), hence (Kr)x/Kr is always 
less than 0. Thus, it follows that if X > 1, the inshore wave height will be underestimated 
(since the refraction effect is over-exaggerated). The converse is true for X < 1. For X = 1, 
the error is identically zero. However, there is no PEM that gives X - 1 for any range of 
wave directions. For example, if Pade approximation is used, the parabolic equation model 
will overestimate the inshore wave heights for most wave directions (> 15°). 

Radiation stresses 

The next important question is what effect these errors have on wave-driven 
longshore currents calculated using the parabolic equation model. For straight and parallel 
depth contours, the important radiation stress gradient term for these currents is 

3SV 

dx 

sin9 3Ecgcos9 [  H,     (cgcos9). 

dx 
• = S 

H 
(25) 

Outside the surf zone (disregarding bottom friction), the right-hand side should be 
zero, since there is no dissipation. Performing the differentiation of the second term in the 
curly braces and rearranging, we obtain: 

1 

dx 
= 2 

COS0 
(0. (26) 

V       8     / exact 
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A similar expression is obtained for the parabolic equation model. The last term in 
Eq. 25 is the shoaling term, which is identical both in the exact and the parabolic case. 
The second term is the refraction term. 

Using Eqs. 22 and 23, and remembering that (cos 0)x/cos 8 = (KT)X/KT, the 
difference between the exact and the PEM expression for the radiation stress term is 
obtained as shown below: 

i (ds\       i fas 
s~l *" U   M * 

= 2^1      -(%!      W^l      "I —! (27) H JPEM  I H AxaJ   V cose jeEM  { cose 7exact 

•My *2(i-<y -MT 
Outside the surf zone, we therefore see that: 

= 4(X-l)j 
1  (dSKA        .,.    J¥Lr 

s„,   ax /PE '    K' 

(28) 

which is generally non-zero, meaning that currents are generated which should not be there. 
Only when S = 0 (or the depth is constant) is the right-hand side zero, as it should be, for 
all wave directions. The type of current generated depends on X. If X > 1, dSxy/8x < 0, and 
spurious currents are generated which may look realistic. On the other hand, when X < 1, 
9Sxy/9x > 0 and clearly unrealistic currents are generated in the "opposite" direction to wave 
propagation. 

In the following second part, numerical examples are presented in order to quantify 
the errors. 

Numerical Examples 

The parabolic approximations implemented in MIKE 21 PMS will now be 
compared with the analytical solution on a beach with straight and parallel depth contours. 
The slope is 1:50 and the water depth at the toe of the slope is 10m. The shore is parallel to 
the y-axis and the wave direction is measured from the x-axis. A monochromatic wave is 
considered, with wave height H=lm at 10m depth and wave period T=8s. 

The results in Figures 3 to 5 are shown as functions of the wave direction at the toe 
of the slope, for a location halfway up the slope, where the depth is 5m. Note that the errors 
generally increase with decreasing water depth. However, in very shallow water, when 
wave breaking becomes important, the energy dissipation due to wave breaking is likely to 
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be more important than the refraction error in the PEM. This aspect was not investigated in 
this study. 

In Figure 3, the relative errors (in %) in the wave directions calculated using the 
parabolic equation model are shown. It is seen that the errors are less than 1%, even for 
directions as large as 70°. This confirms that wave directions are calculated accurately using 
the parabolic equation model. 
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Figure 3. Relative errors in wave directions at 5m depth. 

In Figure 4, the corresponding relative errors in wave heights     are     shown.     As 
expected, these errors are much larger, especially for the Simple approximation. For very ' 
large wave directions (directions > 50°), the Minimax 80° performs well, however, it 
produces much larger errors for smaller directions. Generally, the various approximations 
are very accurate (less than 5% error) for directions up to 50°. 
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Figure 4. Relative errors in wave heights at 5m depth. 

Figure 5 shows the relative errors in the radiation stress term S . Notice that it is 

not the radiation stress gradient that is shown. It is again seen, that the Simple 
approximation only works well for very small directions and that the Pade approximation 
and the Minimax 10°-30° approximations are almost identical. The errors for larger wave 
directions decrease with increasing aperture width in the Minimax approximation. 
However, the Minimax approximation with large aperture width (Minimax 70°, Minimax 
80°) gives bigger errors than the other PEM for small wave directions. 
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Figure 5.     Relative errors in the radiation stress term S    at 5m depth. 
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Figure 6.      Radiation stresses Sxy as a function of distance towards 

the shore (x). The wave direction at the toe of the slope is 30°. 

In Figure 6, Sxy is shown as a function of the distance towards the shore (x) for the 
case where the wave direction at the toe of the slope is 30°. From this figure, we can see the 
magnitude of the gradient dSKy Idx. that generates the false currents in the parabolic 

equation model. The Simple approximation has a large positive gradient, which gives 
clearly unrealistic currents. The Pade and the Minimax 10-30 approximations have very 
small gradients. These gradients will not generate significant currents. The higher Minimax 
approximations generate spurious currents in this case because the gradients are negative. 

The magnitude of the currents can be seen in Figure 7 where the longshore current 
profiles are given for four cases. The first three show the performance of the Simple 
approximation, the Minimax 40° and the Minimax 80° approximation for an angle of 
incidence of 30°. The Minimax 40° approximation is very good in this case, there is almost 
zero current outside the surf zone, whereas the two others generate modest currents. The 
fourth case shows the current profile for the Simple approximation for the case of a large 
incident wave direction (60°). In this case, the false current offshore of the surf zone is seen 
to be of a significant magnitude compared with the surf zone current. 
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Figure 7. Longshore current profiles. 

Conclusions 

The investigations in this paper show that the predicted wave directions from PEM models 
are generally accurate. However, wave heights, radiation stresses and longshore currents 
predicted from PEM can contain significant errors depending on the parabolic 
approximation used. The error arises because of the inexact representation of the refraction 
coefficient in PEM. 

In the examples given here, it was easy to quantify the errors and identify the false 
longshore currents. However, for a complex bathymetry as usually encountered in nature, it 
will generally not be as easy, and we must emphasize the importance of making a proper 
choice of parabolic approximation. Also, in real applications the incident wave field will be 
directional, and thus, what works for one wave direction may not work for another. 

Definitely, the Simple approximation should not be used in cases where the waves 
approach at an angle. In most practical cases, using a Minimax 50° or 60° approximation 
should work well, since this gives, on the average, a small error in the refraction coefficient 
over a large range of wave directions (0° to 60°) that will normally be encountered in 
practice. For cases where the wave directions in the study area are known a-priori to be less 
than 30°, the Pade approximation is recommended. 
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