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ABSTRACT: The effects of lateral mixing on the stability of longshore currents 
are examined. For the model problem originally considered by Bowen and Holman 
(1989), it is shown that the inclusion of lateral mixing changes the stability charac- 
teristics of the longshore current. In particular, it eliminates the low wavenumber 
cutoff predicted by the inviscid theory. 

INTRODUCTION 
In this paper we investigate how lateral mixing affects the stability of longshore cur- 
rents. Bowen and Holman (1989; BH89 hereafter) showed that longshore currents in 
the surf zone are frequently unstable and that these instabilities manifest themselves 
as wavelike oscillations of the longshore current of the kind found by Oltman-Shay et 
al. (1989). 

BH89 derived the equations governing the linear stability of the longshore current in 
the absence of bottom friction and lateral mixing. They showed that the stability of 
the longshore current is governed by a modified Rayleigh equation. BH89 solved the 
stability equation for a model problem in which a longshore current of the form sketched 
in figure 1 flows over a horizontal bottom. They demonstrated that the longshore 
current is unstable for wavenumbers in a certain range and that many properties of 
the waves generated due to the instability of the longshore current are consistent with 
the observations of shear waves reported by Oltman-Shay et al. (1989). 

Since the pioneering work of Bowen and Holman, several contributions have been made 
that have clarified many aspects of the shear wave generation problem [see Ozkan- 
Haller and Kirby (1998) for a brief review]. Here we consider how the inclusion of 
lateral mixing affects the stability of longshore currents. 
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region 3 

Figure 1: Velocity profile used by BH89. This same velocity profile is also used in our 
model problem. In all of the calculations below, we use XQ = 100 m and VQ = 1 m/s. 

Falques and Iranzo (1994) and Falques et al. (1994) have already included lateral 
mixing in the calculations of the stability of longshore currents. Our work differs from 
that of Falques et al. in that here we consider how the inclusion of lateral mixing 
changes the stability of a simple longshore current profile of the type considered by 
BH89. The simplicity of the current profile allows us to perform analytical calculations 
of how the addition of the lateral mixing changes the stability characteristics of the 
longshore current. This, in turn, makes the interpretation of the results easier. 

The outline of the rest of the paper is as follows. We first derive the equation that 
governs the stability of the longshore current in the presence of lateral mixing. We 
then solve the resulting equation for the model problem considered by BH89. Example 
results are then presented that demonstrate that the inclusion of lateral mixing can 
destabilize the longshore current. A discussion of the mechanism by which lateral 
mixing can destabilize the longshore current follows the example results. The paper 
concludes with a summary. 

MATHEMATICAL FORMULATION 

We start with the depth-integrated equations of continuity and momentum 

dt dxi (1) 

~dt+Ujdx~, = -9 
d<   ,   1 dSi} 

dx. H -H  ph dxj      dxj 
vh 

dx;      dx. ph (2) 

where £ is the surface elevation, h is the water depth, «,- is the depth-integrated 
horizontal velocity, S;J is the radiation stress, v is a lateral mixing coefficient, and 
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r^; is the bottom shear stress. The lateral mixing represented by the v terms in (2) 
could be either due to turbulent lateral mixing (generated by breaking waves) or due 
to dispersive mixing generated by the interaction of the cross-shore and longshore 
currents (Svendsen and Putrevu 1994; Smith 1997). Since these lateral mixing terms 
have the same form as viscous terms, the terms viscosity and lateral mixing will be 
used interchangeably in the rest of this paper. 

We now assume that the total flow consists of a steady longshore current V(x) and 
a shear wave with surface elevation rj(x,y,t) and depth-averaged horizontal velocities 
u(x,y,t) and v(x,y,t) in the cross-shore (x) and longshore (y) directions. We further 
assume that u and v are much smaller than V. Under these assumptions the momentum 
equations governing the shear wave reduce to (neglecting the forcing and the bottom 
shear stress) 

du  ,,,9u __ 

~di        !Fy~~ 
®1     1JL (  h — 
dx     hdx \    dx 

1 d  f , (du     dv 
hdy [     \dy     dx 

dv       dV        dv _      dr) 

dt        dx dy dy 

2_e>_ /    dv 

hdy V    dy 
+ ld_ 

hdx 

, du     dv\ 

dy     dx) 

(3) 

(4) 

The continuity equation under the rigid lid assumption [see BH89 or Dodd and Thorn- 
ton (1990) for a justification of the rigid lid assumption] reduces to 

|.(H + |(H = 0 (5) 

The nondivergence of the continuity equation allows us to introduce a stream function 
\P such that 

4^ = hv      yy = -hu (6) 

Since we are seeking wavelike solutions, we assume that 

ty(x, y,t) = 4>(x) expi(ky — LJt) (7) 

where k is the wavenumber and w is the frequency. The stream function can be used 
to combine (3) and (4) [by cross-differentiation followed by subtraction] into a single 
equation in <f>: 

(V-c) 

+Tk<u° 

h 

k2<j>x     k24>hx 

~~h h? 

ik \dx2 

{vh)x (<j>. 

k2<f> 

T 
k2(vh)x (<t> 

(8) 

where c = u>/k is the wave speed. The boundary conditions corresponding to (8) are 

•dS = ° 
:0,Z- (9) 

(8) subject to (9) forms an eigenvalue problem. As is usual in stability calculations, we 
assume that the wavenumber k is known and treat the frequency u> as the eigenvalue. 
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If w has a positive imaginary component for a given k it implies that the longshore 
current is unstable to disturbances of that wavenumber. 

The terms on the RHS of (8) are terms that arise due to the inclusion of the lateral 
mixing. For v = 0, (8) reduces to the equation derived by BH89. [The appropriate 
boundary conditions for the reduced equation are <j6 = 0 at £ = 0, x —>• oo.] For small 
values of v the RHS of (8) is small and unimportant except at the shoreline and the 
singular points of the inviscid equation. At the shoreline, the necessity of satisfying 
an additional boundary condition leads to the generation of a boundary layer. At the 
locations where V = c, the inviscid equation is, in general, singular whereas the full 
equation is not. Therefore, at these locations, internal boundary layers will develop 
when lateral mixing is included. 

MODEL PROBLEM 
We consider the stability of the longshore current sketched in Figure 1. The bottom is 
assumed to be horizontal. The inviscid stability of this current profile was calculated 
by BH89. Here we modify their solution to account for lateral mixing. For a horizontal 
bottom (8) reduces to the Orr-Sommerfeld equation 

We assume that the strength of the lateral mixing is such that a typical term on the 
RHS of (10) is much smaller than a typical term on the LHS. Formally, this requires 
that 

^<1 <") 

where k% is a typical wavenumber, vt is a typical value of the lateral mixing coefficient, 
and Vo is the maximum longshore current. Note that since kt ~ 0.01 m_1, Vt ~ 0.1 
m2/s, Vo ~ 1 m/s, (11) is easily satisfied. 

For the longshore current sketched in figure 1, (10) reduces to 

^-c>(£-*)*=S(£-*')a* ^ 
in each of the three regions. In this case, the singular points of the inviscid equation 
are the points x = Sx0 and x = x0 and internal boundary layers develop at these points 
to smooth out the discontinuities predicted by the inviscid theory. 

At x = 0 and x = xo, the boundary layer correction to the inviscid solution is governed 
approximately by 

tP^BL       v d4<t>Bl ,.„> 
°  &x>    ~ ik   Ax" (    ' 

which implies that at these locations 

<t>BL oc exp [±(1 - i)Pix] (14) 

where /?i = T/U>/2IS > k. At x = SxQ the boundary layer correction is approximately 
governed by 

n/       x &4>BL ^ v dA4>BL ,, .N 

^'c)^r"Tk^x^ (15) 
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which leads to 
<PBL cc exp [±(1 + i)(32x] 

where /32 = ^/{kV0-uj)/2v > k. 

The solution to (12) can therefore be written as 

siah(kx) + Bx cosh(A)s) + Fy exp[-(l - i)0ix] 
+Gi exp[(l + i)/32(x - Sx0)] 

(16) 

X < &XQ 

>= {   A2 sinh[fc(z - Sx0)] 4- B2 cosh[fc(z - Sx0)] (17) 
+.F2exp[-(l + i)(32{x - 8x0)] + G2exp[(l - i)@\{x- x0)]   Sx0 < x < x0 

A3exp[-fc(x -s0)] + ^3exp[-(l- i)fl\{x - x0)] X > XQ 

The unknown coefficients (the A's, B's, F's, and G's) and the eigenvalue (w) have 
to be determined by imposing the boundary conditions at x — 0 and the matching 
conditions at x = 8x0 and x — Xo- [The boundary conditions at infinity have already 
been imposed in (17).] The appropriate matching conditions are: 

x3 continuous 

1. hu continuous => <j> continuous 

2. hv continuous => <j>x continuous 

3. r\ continuous => ik<f>dV/dx + v- 

4. -gdr)/dx + vd2u/dx2 continuous =>•  (V - c)d2<j>/dx2 + (v / ik)[2k2 d? <j> / dx2 - 
di4>/dxi) continuous 

The last of these conditions follows from the cross-shore momentum equation (3). 

Applying the boundary and matching conditions leads to (after a fair amount of alge- 
bra) 

u2 + F{8, kx0)u + G(5, kx0) + (j^\ T(w, kx0, 8, fa/fa) = O Q) (18) 

where 
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G   =    (kV0)
2 
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(19) 

(20) 

{2(1+ 0{* 

+CT(1 + i) 

Pi (AK)2 

C0+^-(S0 + C0) 
*x2 

AK 

+ AVXC5 Si-s + 77—{Si-s + Cis) 
Vx2 

(So + Co) + Ss (Si-i + Ci_j 

02 
(1 - os* Si-s + TJ-(SIS + Cis) 

Vx2 4(50 +Co) 
(21) 

In the above, So = sinh(kxo), S5 = sinh (Axfao), Si-j = sinh[fca;o(l - 8)] and the C's are 
short forms for the corresponding cosh functions. Additionally, Vx\ and Vx2 represent 
dV/dx in regions 1 and 2 respectively, AVX = Vxi — Vx2, and a = u — fcVb- 
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In the limit of v -> 0 (/?i,/?2 ->• oo), F and G reduce to the expressions given by 
BH89's (16), and we then recover Bowen and Holman's solution. The term denoted 
by T represents the effects of including the lateral mixing. 

For v = 0, (18) has two solutions for u> for a given value of k - these are the solutions 
found by BH89. For small p, the T-term modifies these solutions. These modifications 
can be calculated in a straightforward manner. In addition to modifying the BH89 
solution, the T-term also introduces new roots to (18). The significance of these new 
roots is, at present, unknown. In the following, we discuss only the roots that can be 
interpreted as modifications of the BH89 solution. 

RESULTS 
Figure 2 shows the variation of the growth rate a),m as a function of the wave num- 
ber. For comparison, we also show Bowen and Holman's inviscid solution. It is clear 
from this figure that including lateral mixing in the calculations significantly alters 
the stability characteristics. In particular, the range of wavenumbers over which the 
instability occurs is significantly enhanced, the location of the most unstable wave is 
changed, and the low wavenumber cutoff predicted by the inviscid theory is removed. 

Present solution 

0.4 

0.2 ' / 
,''" 

- — - BH89 solution 

\           \\. 
Xii  

-0.2 BH89 solution 

-0.4 \ / 

-0.6 Present solution -----.--- - ..' 
' 

Figure 2: Plot of growth rate, W{m, vs wavenumber for the model problem. The 
parameters used in this calculation are S = 0.5, c = 5x 10-3 m2/s, x0 = 100 m, and 
V0 = 1 m/s. 

In a recent paper, Shrira et al. (1997) solved the weakly nonlinear version of the 
model problem considered by BH89. They showed that the triad interactions between 
individual shear wave modes could remove the low wavenumber cutoff predicted by 
the linear inviscid theory. Our results show that including the lateral mixing leads to 
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the same result. Thus, a plausible scenario is that the low wavenumber oscillations 
are initially generated by the present mechanism and grow to finite amplitude by the 
mechanism discussed by Shrira et al. 

Figure 3 shows the variation of the real part of the frequency as a function of the 
wavenumber for the branches of the solution that have a positive growth rate. We 
see from this figure that the addition of lateral mixing does not alter the dispersion 
relationship significantly in the region where the inviscid theory predicts an instability. 

< 
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" 
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problem. The parameters used in this calculation are S — 0.5, u = 5 x 10-3 m2/s, 
XQ = 100 m, and V0 = 1 m/s. Note that only the branches that have a positive growth 
rates are shown. 

Figure 2 showed the growth rate as a function of wavenumber for a particular choice 
of the lateral mixing coefficient v. It is also of interest to examine the sensitivity of the 
growth rate at a fixed wavenumber to the choice of the mixing coefficient. This is done 
in figure 4 which shows the variation of the growth rate as a function of v. Realistic 
values of p for the nearshore are expected to be in the range 10~3 to 0.1 m2/s. The 
lower end of the range would apply if the lateral mixing were due to the turbulence 
generated by breaking waves (Svendsen 1987; George et al. 1994). The higher end 
would apply if, as is more likely, the lateral mixing were due to dispersive mixing 
generated by the interaction of the cross-shore and longshore currents (Svendsen and 
Putrevu 1994). We see from figure 4 that the growth rate increases with v for v in the 
range that is normally expected. 

BH89 found that the backshear parameter S controls the strength of the instability in 
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v (m7s) 

Figure 4: Variation of growth rate with the lateral mixing coefficient. The parameters 
used in this calculation are 8 = 0.5, kxo = 1, x0 = 100 m, and V0 — 1 m/s. 

the inviscid problem - the stronger the backshear, the stronger is the instability. It is 
therefore of interest to see whether this behavior carries over to the case where lateral 
mixing is included. Figure 5 shows the variation of the growth rate with S. For this 
calculation we have chosen the parameters such that the inviscid calculations predict 
stability. This figure clearly shows that the backshear S also controls the stability of 
the viscous problem. 

MECHANISM 

The calculations presented so far have shown that including the lateral mixing can 
destabilize an otherwise stable longshore current. Since this result is somewhat counter- 
intuitive, it is useful to examine it in more detail. Therefore, we discuss below the 
mechanism by which lateral mixing (or viscosity) can destabilize a longshore current. 
The discussion here largely follows Lin's (1967) discussion (see pp. 60-63 of Lin's 
book). 

For h = constant, the equations governing the stability of the longshore current reduce 
to 

du 

dx 

dv 

dy 
= 0 

du        du _ 
~dl+    Ty = -gTx+1/ 

d2u     d2u 

dx2     dy2 

(22) 

(23) 
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Figure 5: Variation of the growth rate as a function of the backshear parameter. The 
values used in the calculations are v — 5 X 10~3, m2/s and kx0 = 1, x0 — 100 m, and 
VQ = 1 m/s. The inviscid solution is stable for this choice of parameter values. 

dv       dV        dv 

dt        dx dy dy        \dx2     dy2 (24) 

From these equations, it is straightforward to derive the following energy equation 

dE f°° 
——   =    — /     huv(dV/dx)dx 
dt Jo 

-v /    h [(du/dxf + {du/dyf + {dv/dxf + (dv/dyf\ dx       (25) 

where an overbar denotes averaging over a shear wave period and E is the total kinetic 
energy defined by 

E = - /    («2 + v2)dx (26) 
i Jo 

(Because of the rigid-lid assumption, the potential energy does not enter the energy 
equation.) 

The first term in (25) represents the energy transfer from the longshore current to the 
shear wave and the second term represents the dissipation of the shear wave energy by 
the viscosity-like terms. Now the introduction of viscosity changes the phase between 
the cross-shore and longshore velocities so that the first term on the RHS of (25) is 
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changed relative to the inviscid solution. Thus, viscous terms modify the inviscid solu- 
tion in two important ways: 1) they change the phase between the velocity components 
of the shear wave which leads to an extraction of energy from the longshore current and 
2) they lead to direct dissipation of the shear wave energy. Therefore, viscous terms 
can destabilize an otherwise stable longshore current profile if the energy extracted 
from the longshore current exceeds the direct dissipation. 

To explore the changes caused by the inclusion of viscosity-like terms further, we show 
in figures 6, 7, and 8 the cross-shore variations of <j> (which is proportional to u), <j>x 

(proportional to v), and —uv(dV/dx) respectively. (The parameter values are chosen 
such that the inviscid calculation predicts stability whereas the viscous calculation 
predicts instability.) It is clear from figures 6 and 7 that the introduction of lateral 
mixing terms changes the phase of u and v. Figure 8 shows that this change in 
phase results in an extraction of energy from the longshore current. Figure 8 further 
demonstrates that most of the energy extraction takes place on the seaward face of the 
longshore current, thereby explaining the importance of the backshear on the stability 
found in figure 5. 

0.2 0.4 0.6 o.e 1.2 1.4 1.6 1.8 

Figure 6: Cross-shore variation of <fxx u. Top panel inviscid (BH89) solution. Bottom 
panel calculation including lateral mixing terms. Note that the scale of the y axis is 
arbitrary. The parameter values used in the calculations are kxo = 1, xo = 100 m, 
S = 0.5, VQ = 1 m/s, and v = 5 X 10"3 m2/s. 
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Figure 7: Cross-shore variation of <j>x tx v. Top panel inviscid (BH89) solution. Bottom 
panel calculation including lateral mixing terms. Note that the scale of the y axis is 
arbitrary. The parameter values used in the calculations are kxo = 1, Xo = 100 m, 
<5 = 0.5, V0 = 1 m/s, and i/ = 5x 10~3 m2/s. 

SUMMARY 
In this paper we considered how the addition of lateral mixing affects the stability 
of longshore currents. We showed that the inclusion of lateral mixing can destabilize 
an otherwise stable longshore current. The instability induced by the lateral mixing 
is such that it removes the low-wavenumber, low-frequency cutoff predicted by the 
inviscid theory. As in the inviscid case, the parameter that controls the stability of the 
longshore current is the shear on the seaward face of the longshore current. 

The inclusion of lateral mixing destabilizes the longshore current as follows: it provides 
a Reynolds' stress that enables the shear wave to extract energy from the longshore 
current. We showed that this extraction of energy takes place mainly on the seaward 
face of the longshore current. 

Finally, note that Falques and Iranzo (1994) and Falques et al. (1994) have already 
investigated the effects of lateral mixing on the stability of longshore currents using 
a numerical model. While Falques et al. did find that the inclusion of lateral mix- 
ing increased the instability in certain cases, they did not find the instability at low 
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Figure 8: Cross-shore variation of —uvdV/dx. Top panel inviscid (BH89) solution. 
[The inviscid solution is stable for the choice of parameter values used in this calculation 
(see below). This is the reason why uv is zero for the BH89 solution.] Bottom panel 
calculation including lateral mixing terms. Note that the scale of the y axis is arbitrary. 
The parameter values used in the calculations are kxo = 1, Xg = 100 m, S = 0.5, Vo = 1 
m/s, and c=5x 10"3 m2/s. 

wavenumbers found here. At present we do not know whether this discrepancy is due 
to the artificial nature of our model problem or due to the boundary conditions used 
by Falques et al. Therefore, it is necessary to extend the present analysis to more 
realistic longshore current variations. 
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