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On validation of a sand waves and sand banks 
model 

S. J. M. H. Hulscher * 

Abstract 

A morphological model is described for the interaction between tidal mo- 
tion and an erodible bed. This model is able to distinguish between a flat 
bed, and the generation of tidal sand banks and/or sand waves, based on 
physical parameters. The physical meaning of the turbulence parameters 
Av and S, as used in this model is subject of discussion in the present pa- 
per, therefore a simpler system is investigated. A simple flow is described 
by a logarithmic profile model (a generally accepted turbulence model), 
as well as by a partial slip model, using Av and S. It is shown that the 
two models can be calibrated such that they produce the same bed shear 
stress, depth-averaged velocity and depth-averaged eddy viscosity. This 
leads to expressions for Av and S as function of the roughness height and 
a shape parameter in the logarithmic profile model. Application of this 
information to two locations shows that the bed form prediction model 
gives encouraging results. 

1    Introduction 

The offshore seabed of shallow seas is covered with rhythmic patterns on a large 
scale, see e.g.Off [1963]. Tidal sand banks have wavelengths of about five kilo- 
meters and reach heights up to 40 meters. Sand waves, see figure 1 are smaller, 
wavelengths of 500 meters, heights up to 10 meters. Both patterns are shown in 
a schematic way in figure 2. When these two patterns overlap, the crests are ori- 
ented differently (angle between 60°- 90°), which suggests that these two patterns 
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Figure 1:   Visualization of the North Sea 
& Andorka Gal, 1996. 
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Figure 2:   Sketch of tidal sand banks and sand waves, the relation to the main 
tidal current axis is indicated. 

are different. Therefore different mechanisms are responsible for their formation 
and behavior. 

A model to describe formation of these large-scale sea-bed patterns due to 
tide-topography interactions is given in Hulscher [1996]. In this model the tide 
is described by a three-dimensional shallow water model. This model uses a 
very simple turbulence closure scheme, see also Engelund [1970]: constant eddy 
viscosity Av in combination with a partial slip parameter at the bottom. The 
latter introduces a so-called resistance parameter S. 

Application of this turbulence model often raises questions how these results 
compare with more realistic turbulence-closure schemes. Unfortunately it is not 
completely known how turbulence should be modeled, therefore the answer to 
this question can never be definite. A further, even more important question 
is how these, rather abstract, parameters can be determined from observations. 
Illustrative issue is whether observations are to be collected either on the top and 
in the trough of the bank or at the adjacent sides. 

A start to answer the first question is made studying a simplified system: a 
two-dimensional horizontal model without Coriolis force and neglecting inertia 
effects. This system is analyzed in two ways: using a realistic turbulence closure 
scheme and the simple scheme based on eddy viscosity and the resistance param- 
eter. By comparing the results of these two methods one finds explicit relations 
between at one hand more accepted model parameters an at the other hand, the 
eddy viscosity Av and the resistance parameter S. Furthermore this enables to 
investigate how the latter two variables are connected, and if they represent two 
degrees of freedom. 

These results can be used to make estimates for the three dimensional model 
in which Coriolis effects and inertia effects are included. These lead to choices 
for the parameters which are following Hulscher [1996] crucial to determine the 
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bed structure: a flat bed or sand waves or tidal sand banks or a combination of 
the latter two patterns. This procedure enables the estimate of these parameters 
without analyzing an network of current meter recordings. For two cases explicit 
estimates are given: an average North Sea location and the Middelkerke bank. 

The outline of this note is as follows. A short description of the three- 
dimensional bed form model is given in section 2. Next, the simplified system 
and subsequent modeling is given in section 3. The analyses in particular for the 
logarithmic profile and the Av — S model are given in sections 3.3 and 3.4, respec- 
tively. Matching of these two models is discussed in section 3.5. These results 
are transferred to the three dimensional model, which is shown and discussed in 
section 4. In this section two physical locations are treated as examples. Lastly, 
conclusions are presented in section 5. 

2    Model for sand waves and tidal sand banks 

The generation of large-scale bed form patterns is studied based on the idea that 
these structures might be free instabilities of the coupled morphological system: 
sea water and sea bed. Therefore a suitable model of this system is formulated 
and use for analysis. 

The morphological shallow water is based on tidal flow described by three- 
dimensional shallow water equations, bed load transport and conservation of sed- 
iment. Tidal averaging and application of a linear stability analysis lead to pre- 
diction of the dominant bottom mode starting from a flat bottom. Translating 
the measures of these fastest growing sinusoidal sea bed waves into physical quan- 
tities shows that the pattern is similar to either similar to sand waves or to tidal 
sand banks; patterns which are significantly different, see figure 2. This leads to 
the qualitative result in figure 3; the derivation of this figure is described in detail 
in Hulscher [1996]. 

Figure 3 shows that the bed structure prediction depends strongly on the 
Stokes number Ev of the tidal flow and the bed resistance parameter S. These 
are defined as 

in which H is the local mean depth and a the frequency of the tidal motion. 
The constant turbulent eddy-viscosity, Av (rn^s"1), quantifies the way in which 
horizontal momentum is transferred in vertical direction. The quantity S (ms_1) 
is used to model the partial slip near the bed boundary. This overcomes the 
problem that the constant eddy viscosity is near the bottom too simple to model 
both velocity and shear stress in a realistic way. After Engelund [1970] here Av 

and S are considered as two constants which describe together the vertical profile 
of the vertical flow profile. 
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Figure 3: Characteristic bed forms predicted by the three-dimensional shallow 
water model as a function of the bottom slip parameter S and the Stokes number 
Ev. Quantification depends on values of the Coriolis parameter, local depth, bed- 
slope effects on sediment transport and the nonlinearity in the bedload transport 
formula. 
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3    Modelparameter derivation 

3.1    Simplified situation model 

To illustrate the procedure a very simplyfied model and model-situation is suf- 
ficient. Starting from the three-dimensional shallow water model as in Hulscher 
[1996] the simplifications are as follows: 

• Coriolis effects are neglected 

• tidal flow, u(z, t), is horizontally uniform 

• friction dominates inertia effects: the eddy turn-over scale is much smaller 
than the scale on which the flow varies, such that eddies can reach a statis- 
tical equilibrium 

Here the tidal flow is driven by pressure gradient, oscillating at the tidal frequency 
a and having amplitude Px. The flow is opposite the pressure gradient; the 
equation of motion becomes 

Px   • d 0 = sm at + — 
p oz (2) 

u = 0 at   z = ZQ , 
du 

at   z = H, 

in which vt is the turbulent eddy viscosity coefficient. The boundary conditions 
near the sea bed and surface are as follows 

(3) 

vt{z,t)~=0 at   z = H, (4) 

in which z0 is the roughness height. The z-axis is here directed upwards, from the 
sea bottom z = 0 till the sea surface z = H. Here the surface stress component is 
chosen zero. The bottom shear stress is denoted by ft{t) and is time-dependend: 

du 
n = pvt{z)-,r- = p\u*\ut at   z = 0, (5) 

where ut is the time-dependent friction velocity. 

3.1.1     Linearization of the shear stresses 

Definition (5) shows that, in general, the friction velocity u» depends on time, so 
that the momentum equation is difficult to solve. To deal with this one usually 
replaces one friction velocity factor M* by a representative constant «,. Now the 
bed shear stress condition becomes 

. .du        _ „ 
Tb = Pvt{z)-~- = putut at   z — 0 , (6) 
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A possible way to derive such a representative value for u* is requiring that 
the tidal-averaged shear stresses of both formulations are equal: 

p(\ut\ul) = p(utu
2,) , (7) 

in which <> denotes the tidal averaging. Further assuming that the friction 
velocity oscillates with the tidal frequency a (like the forcing pressure gradient) 
and that it has an amplitude u„, the searched constant becomes [Zimmerman, 
1981, and Mei, 1989] 

8 - 
u» = —it*. (8) 

3.2    Model analysis: general part 

In this model the tidal flow is forced by the pressure gradient and as the latter 
oscillates at frequency a, so in absence of inertia effects the tidal flow can simply 
be decomposed as follows 

u(z,t) --= u{z) sin {at). (9) 

Substitution of (9) into the equation (2) leads to the following equation of motion 
for u(z): 

0 = x- + — 
p      az Vt{z)d-z 

(10) 

By integration of (10) using the upper boundary condition (4) and the lower as 
given in (6), the following equality is obtained 

P 8 
—H = utu* = — ul. (11) 
p Sir 

Up till this point no simplifications are made regarding the choice of a specific 
turbulence closure scheme. In the next two sections equation (10) will be solved 
using two different turbulence closure schemes. 

3.3    Logarithmic profile model and analysis 

Viscosity parametrization From turbulence modelling is known that the tur- 
bulent eddy viscosity increases from the boundaries in which the distance to the 
boundary is a measure for the length scale of the turbulent eddies. So at the fixed 
sea bottom the eddy viscosity equals zero and it increases with the distance from 
the bottom z: 

vt{z)~z. (12) 

The sea surface can act as a less stringent boundary. Many physical processes 
lead to a more effective mixing in the upper part of the water column, e.g. action 
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of wind waves, swell, stratification. Here this fact is parametrized by a param- 
eter e, which value is here between the limits 1/2 (little influence of surface on 
turbulence) and 1 (rigid surface). This is chosen such that the viscosity at the 
sea surface is: 

vt(H) ~ H (1 - e) . (13) 

And near the surface H — ( (in which C positive) the length scale of the turbulent 
eddies increases following 

vt{H-0~vt{H)+{{2e-l). (14) 

The previous considerations motivate a parabolic function as parametrization 
for the dimensional turbulent eddy viscosity vt 

vt(z) = ku*z (1 - e—) , (15) 

in which K is the Von Karman constant K ~ 0.41. 

Velocity profile Solving equation (10), using boundary conditions (3), (4) and 
expressing it in terms of u* using (6) yields 

u{z) = - mi-i + ^mf1 © z0J e \l-ef 
(16) 

Depth-averaged quantities   The depth-average value of the turbulent eddy 
viscosity can easily be computed from equation (15) and yields 

p4 = AtUy£^M. (17) 
6 

In figure 4 the normalized viscosity profile is shown. The depth-averaged velocity 
follows from equation (16 and is given by 

u — — 
K 

.   iH\      1      1-e,    /l-e\      £-1,    ., ln^)" + ^ln rr^f +^ln(1 (18) 

3.4    Ay- S model 

In this section the highly simplified turbulence model is chosen, here called S 
and Av model, which is applied in Hulscher [1996]). The model has a vertically 
constant eddy viscosity, here denoted by Av. This constant eddy viscosity model 
lacks variations which lead to describe the correct velocity and shear stress both 
in the interior as well as at the bottom. However, the aim here is to use this 
model for studying sediment transport, therefore it has to produce the correct 
bed shear stress, rather than the exact horizontal velocity near the sea bed. This 
can be achieved by choosing a partial slip condition, instead of condition (3), at 
the sea bed. In this context the partial slip condition is formulated as follows 

w*w* = Su at z = 0, (19) 

in which S is the so-called resistance parameter. 
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Figure 4: The dimensionless viscosity profile vt{z)/vt for three values ofe (straight 
e = 0.5, dashed/dotted e = 0.75, dashed e = l.Oj. 

Velocity profile    The solution of equation (2), using (4) and (19) becomes 

M   l 
U(Z) — w*u* 

.Jit, 2HJ 
(20) 

Depth-averaged quantities    The depth-averaged viscosity in this model is 
simply the constant 

The depth-averaged velocity u in this model yields 

u — u*u 
( H 

+ T; * V3A„     S) ' 

(21) 

(22) 

3.5    Matching 

Now the models, discussed in the previous two sections, section 3.3 and section 
3.4, will be matched by appropriate requirements. First remark is that sediment 
transport is a function of the bed shear stress. This motivates the first require- 
ment: the Av — S model has to produce the same bottom shear stress as in the 
logarithmic model. Based on this, the bottom boundary condition in the Av — S 
model has already been adapted such that expression (6) is valid in both models. 

The second condition is that the water discharge is equal in both models, 
This condition is here transferred into the requirement of equal depth-averaged 
velocities resulting from both turbulence formulations. Using equations (18) and 
(22) this means 

\z0J     e        e 
•In 

1 
cSi 

e-1 
In (1 — e) = KUt V3A, + |).(23) 
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The third condition is that the depth-averaged value of the eddy viscosity vt 

equals the constant eddy viscosity Av. Using equation (17) this leads to 

Av = kutH^~2t) . (24) 

4    Discussion 

Before the discussion here starts, it is worthwhile to remark that all values for 
turbulent eddy viscosity coefficients and bottom shear stress are results of the 
application of a turbulence closure scheme. The logarithmic model, used as a 
reference here, is a often applied and produces satisfactory results. Therefore 
this model is generally accepted. 

In the present model this leads to the following Stokes number Ev by using 
equations (11) and (24) 

K -       Ha       V " 3' 
(25) 

So if Px, H,a are already determined, the value of Ev is still a function of e. 
Using equations (11),  (24) and the matching condition (23) the following 

relation for S and E„ is obtained 

Ev      3 - 2e 

S 6 
H\      1      1-e,    / 1-e \      e-1.   ,,       , 
—    - - + In     H 7— In 1 - e) 
zj      e e V1-6*/ e ^(26) 

This relation shows that S is a function of the roughness height z0, if the other 
parameters are specified. As z0 usually is between 5*10~5 m and 2*10~1 m and 
| < e < 1, this will restrict the values of Ev, S which are physically relevant. 

4.1     Physical discussion 

In general, the pressure gradient Px can be determined from observations. Here 
the pressure gradient Px is roughly estimated from the M^ tidal (spring) range 
A, following 

Px = P * g * —, (27) 

in which L is the tidal wavelength and g the gravity acceleration. Assuming that 
A is 2 meters and the tidal wave follows from shallow water theory (so L= 770 
kilometers on a depth of 30 meters) one derives Px = p * 5.110"5ms" 
frequency is a = 1.410_4s_1. 
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Figure 5: (a) The ratio Ev/S and (b) S for three values of e (straight e = 0.5, 
dashed/dotted e = 0.75, dashed e = 1.0J. Here avarage North Sea conditions are 
chosen, the depth H = 30 meters. 

Offshore North Sea A suitable North Sea average depth is 30 TO. Using 
equation (25) gives that 1.4 < Ev < 2.8 due to the range of 0.5 < e < 1. The 
correct value of e has to be estimated based on current profiles. Using many 
field measurements Sousby [1990] has found that the roughness height ZQ in the 
North sea usually is between 510~5m and 610~3 m, in which the larger values are 
found for rippled sand. Using (26) the ratio Ev/S and subsequently the resistance 
parameter itself can be evaluated. Figure 5(a) shows the ratio Ev/S and in figure 
5(b) the resistance parameter S is shown. 

Middelkerke Bank The Middelkerke Bank is part of the Flemish Banks sys- 
tem; these large tidal sand banks are partly covered with sand waves. At the 
Middelkerke Bank the mean depth is significantly smaller, being about 15 me- 
ters. So here the expected range for the Stokes number becomes 2.0 < E„ < 3.9. 
Vincent & Stolk [1993], p 217, reported that the roughness height z0 at two sta- 
tions around the Middelkerke Bank is between 910~4m and 3.310-2 m. For these 
values the ratio Ev/S and the resistance parameter S are shown in figure 6. 

General The areas in parameter space of both discussed locations are shown 
in figure 7. In this figure also the expected bed structure based on the bed form 
prediction model Hulscher [1996] is also indicated. For the offshore North Sea bed 
a part of the possible parameter combinations predict a flat sea bed, also a part 
of these combinations predicts tidal sand banks. Around the Middelkerke bank 
a part of the parameter combinations predicts tidal sand banks, for a different 
part the slowly growing tidal sand banks are dominated by sand waves, which 
grow faster. Comparison between prediction and the actual bed structure show 
that these results are not unrealistic. So the ranges in the parameters Ev and S 
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Figure 6: (a) The ratio Ev/S and (b) S for three values of e (straight e = 0.5, 
dashed/dotted e = 0.75; dashed e = 1.0./ Here Middelkerke Bank conditions are 
chosen, the depth H ~ 15 meters. 
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Figure 7: Parts of the parameter space Ev and S possible in the offshore North 
Sea bed and around the Middelkerke bank. Also the expected bed behavior as found 
by Hulscher [1996] is indicated. 
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based on natural variations in the quantities roughness height z0 and turbulence 
characteristics e cover different bed structures. These results show that it will 
be worthwile to determine the value of z0 and e more precise and subsequently 
compare the model prediction with the observed local bed structure, for several 
locations in the North Sea. 

5    Conclusions 

A way to investigate the implication of a potenetial sea-bed prediction model is 
presented. To quantify the parameters which describe the turbulence processes, 
first a simpler system, based on steady flow, is analyzed. 

In the simpler system is shown that the S, A^-turbulence model is able to 
produce the same bed shear stress as the accepted logarithmic model. The com- 
parison between these models gives expressions for S and Av in terms of the 
model parameters in the logarithmic model: e and ZQ. So based on this com- 
parison between the logarithmic model and the S, Av model can furthermore be 
concluded that there are two basic degrees of freedom to choose S and Av left, 
here expressed as e and zo. One might argue that these two degrees of freedom 
are restricted, however these restrictions are the result of a calibration of the 
S, Av-mode\ with a logarithmic model. Boundaries limiting the physical realistic 
values of S, Ev will certainly be different if the S, A„-model is calibrated using 
another turbulence closure scheme than the one used in this note. 

The results of the steady flow case are used to estimate the model parameters 
in the tidal morphological model. For two cases the prediction of the model and 
the local bed structure are compared and show good agreement. This indicates 
that it is worthwhile to continue this line of validation. 
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