
CHAPTER 251 

A CLOSED-FORM SOLUTION FOR TURBULENT 
WAVE BOUNDARY LAYERS 

Magnus Larson1 

ABSTRACT: A general, closed-form solution is presented to the 
linearized equation describing the velocity in a turbulent boundary 
layer. The solution is valid for any type of time-varying free-stream 
velocity, although the focus of the paper is on oscillatory flows 
generated by surface waves propagating over the sea bottom. A 
primary objective is to employ the solution for waves with an 
asymmetric velocity field, where nonlinear effects are small enough 
to be neglected in the linearized turbulent boundary layer equation. 
The general solution is developed to more convenient forms for a few 
special cases, including a sinusoidally varying free-stream velocity and 
a velocity given by stream function theory. The solution is tested 
against two different data sets from oscillatory tunnels; one set 
involves a sinusoidal and the other set a cnoidal free-stream velocity. 

INTRODUCTION 

The oscillatory boundary layer that develops when surface waves propagate 
over the sea bottom has many important implications for flow-dependent phenomena 
in the coastal zone. Examples of such phenomena are wave energy dissipation due 
to bottom friction and the initiation and transport of sediment (Grant and Madsen 
1986). The velocity changes with elevation at a high rate in the wave boundary layer, 
which typically causes large shear stresses, high dissipation rates, and strong 
turbulence intensities. An oscillatory free-stream velocity generates a boundary layer 
with a characteristic thickness that is much smaller than the corresponding boundary 
layer under a uni-directional current. Thus, the near-bottom velocity gradients and 
the associated shear stresses are much larger under oscillatory waves than under a 
uni-directional current, which suggests that the waves dominate the flow close to the 
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bottom in many cases. However, because the oscillatory wave motion often does not 
give rise to any net transport of for example sediment, but primarily has a stirring 
effect, a superimposed current may have a marked influence on the net transport 
rate, although the current itself may be to weak to mobilize and transport the 
sediment on its own. 

In nature the boundary layer under waves will almost always be turbulent 
(Nielsen 1992). Most simple approaches to calculate the velocity in the wave 
boundary layer employ the eddy viscosity concept to model the turbulence, where the 
viscosity is taken to be a function of the elevation above the bottom (Kajiura 1968, 
Grant and Madsen 1979, Brevik 1981, Myrhaug 1982). These models mainly differ 
in the formulation of how the eddy viscosity v varies with the elevation z; the most 
simple models are based on a linear variation in v with z (Grant and Madsen 1979), 
whereas more complex models assume several different layers, each having a 
separate equation to relate v and z (Kajiura 1968). In reality, v should also depend 
on time and Trowbridge and Madsen (1984a) developed a model where a time- 
varying eddy viscosity was employed. However, in most models the prediction of the 
velocity in the wave boundary layer is not overly sensitive to the formulation of v, 
and a simple model such as the one suggested by Grant and Madsen (1979) often 
yields satisfactory results. This is especially true if the velocity calculations are 
performed with the aim of computing sediment transport rates; existing equations for 
calculating the sediment transport rate include large uncertainties that do not warrant 
excessively detailed flow computations (Madsen and Wikramanayake 1991). 

The main objective of the present study is to develop a simple, analytical 
model of the flow in an oscillatory boundary layer under rough turbulent conditions 
that may be employed for situations where the free-stream velocity is not purely 
sinusoidal. Such velocity fields are generated by nonlinear shoaling waves, which 
could produce a net transport of sediment due to the asymmetry in the wave velocity. 
In deriving the analytical model, it will be assumed that the effects of the nonlinear 
terms in the momentum equations are negligible, implying that the linearized 
boundary layer equation may be used (Nielsen 1992). A simple eddy viscosity 
formulation in accordance with Grant and Madsen (1979) is employed to model the 
turbulent stresses. The proposed model is tested with data from Jonsson (1980) for 
a sinusoidal free-stream velocity and with data from Nadaoka et al. (1994) for an 
asymmetrical free-stream velocity of cnoidal type. 

The present study focusses on boundary layer development under oscillatory 
waves, but the general solution presented for the velocity profile in the boundary 
layer is valid for any time-varying free-stream velocity. A first-order approach is 
taken (Grant and Madsen 1979) where the governing equation is linearized in order 
to obtain a closed-form solution. Thus, for cases where the free-stream velocity is 
generated by nonlinear waves second-order effects, such as the mass transport in the 
boundary layer (Trowbridge and Madsen 1984b), are not included in the solution. 
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Even though the mass transport may be small it could still be of significance for 
calculating the sediment transport. 

THEORETICAL CONSIDERATIONS 

General Solution 

Employing the simple eddy viscosity model by Grant and Madsen (1979), the 
linearized turbulent boundary layer (TBL) equation may be written (Nielsen 1992), 

K-H) - !{-^!^-tt4 (1) 

where uw(z,t) is the velocity in the TBL, ub(t) the free-stream (wave) velocity, t time, 
z a vertical coordinate, K von Karman's constant (=0.40), and u*m a constant, 
representative bottom shear velocity. With the boundary conditions uw=0 for z=z0, 
where z0 is the characteristic height of the bottom roughness, and uw=ub for z -» o°, 
Equation 1 has the following general solution, 

t 

u»= !jfifi-*wwi+ M
*W (2> 

where ubo denotes ub at t=0 and, 

in which J0 and Y0 are zero-order Bessel functions of the first and second kind, 
respectively, and v is a dummy integration variable. Equation 3 corresponds to the 
solution for a time-independent free-stream velocity employed at t=0 (that is, 
ub(t)=ubg=constant); thus, the solution for any ub(t) is obtained through the 
superposition of the response from an infinite number of temporal changes in ub, as 
expressed by the convolution integral in Equation 2. Figure 1 illustrates Iu in non- 
dimensional form, and the curves may be interpreted as velocity profiles at different 
times indicating the TBL growth through the water column. 

The shear stress at any elevation z may be derived from, 

7 = m'^ = m^\[ji{H>(-t-WtfJ*di+ "JfiA        (4) 

where, 
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KM = 
%\[z /• 

1   2 

dy (5) 

in which J1 and y; are first-order Bessel functions of the first and second kind, 
respectively. The integral Is -» oo as t -* 0, but the approach towards infinity is slow 
and the singularity is easy to handle within the convolution integral in Equation 4. 
However, if ubo^0 an infinite shear stress will be obtained at t=0, because uw=0 
at z=z0 simultaneously as uw=ubg an infinitesimal distance above. The integrals in 
Equations 3 and 5 are time-consuming to evaluate, so in order to speed up the 
calculation of uw and r in Equations 2 and 4, respectively, it is convenient to derive 
look-up tables for Iu and Is. 

In z/z0 

Figure 1.        The integral /„ as a function of non-dimensional distance and time. 

Equation 2 is a general solution of Equation 1 for any type of free-stream 
velocity, although from a physical point of view the solution only makes sense for 
a wave boundary layer where the assumptions behind Equation 1 are applicable. 
There is only one free parameter in the solution, namely the roughness length scale 
z0, which in the case of rough turbulent flow over a flat bed is typically set to kn/30, 
where kn is the equivalent Nikuradse sand grain roughness (Grant and Madsen 1979). 
After it has been defined, the representative shear velocity u*m may be obtained 
implicitly from the solution. Grant and Madsen (1979) studied the TBL under a 
sinusoidal free-stream velocity and used the maximum bottom shear stress Th bmax 
during a wave period to define u*m=(Tbmax/p)    , where p is the water density. For 
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more complex variations in the free-stream velocity other choices to define u*m may 
be more appropriate, such as the mean absolute value of the bottom shear stress 
during a cycle (rbav). 

Sinusoidal Free-Stream Velocity 

Equation 2 was derived using Laplace transform technique and for elementary 
ub(t) more convenient forms than Equation 2 may be obtained. If the free-stream 
velocity is sinusoidal and described by ub~ugcoso)t, where u0 is the velocity 
amplitude at the bottom and w is the angular frequency, the following solution 
satisfies Equation 1 and the boundary conditions, 

N„a 
U~.  =  K„COS(0f -  H„ 

NJZff) 

ff)      / 
j^-codwf+fc (2 

2«.; -h"?     y3 JJy. 

•-y ? 
^ z, 

\ 

\ *. 
•w 

y**wf J2o<y)+Y2
0(y) 

-dy 

(6) 

where N0 and $0 is the modulus and phase, respectively, of the zero-order Kelvin 
function kerjc + i keigX, and f=o)z0/KU*m. The second term in Equation 6 is a 
transient that is dampened out quickly for small values on/; in most cases this term 
is negligible already after a wave period. The shear stress at steady-state conditions 
is given by (see first part of Equation 4), 

f±—NA_cJwr_^+$(2 /-)-*.toff) 
(7) 

where Nj and $7 is the modulus and phase, respectively, of the first-order Kelvin 
function. Grant and Madsen (1979) previously derived the steady-state part of the 
solution for a sinusoidal free-stream velocity (see also Kajiura 1968). 

To permit rapid evaluation of the maximum bottom shear stress it is 
convenient to define a wave friction factor fw from Tbmax=0.5pfM/io

2 (Jonsson 1966, 
1980). In accordance with Grant and Madsen (1979), who defined u*m based on 
Tbmax>fw mav ^e obtained through the expression for Tbmax given by Equation 7. An 
alternative approach would be to use rbav in «*m instead. This would yield a smaller 
Tbmax> because the turbulent mixing is less if rbav is used to define «*m, also implying 
th&tfw is smaller than if the conventional definition of u*m is employed. Figure 2 
displays fw as a function of the bottom excursion amplitude Ab (=u0/(a) over the 
grain size kn for a u*m defined based on rbmax and rbav. 
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Figure 2.        Friction factors for a sinusoidal wave velocity, where the friction 
velocity is defined based on rbmax respective rbav. 

Free-Stream Velocity from Stream Function Theory 

Stream function theory (Dean 1965) is convenient for describing nonlinear 
wave properties, because the theory is valid from deep water up to wave breaking. 
The bottom orbital velocity at a point under a wave described by stream function 
theory may be expressed as, 

2* ub = Y) nX(n) cos(nuf) (8) 

where L is the wavelength, X(n) stream function coefficients, and N the order of the 
theory employed. The velocity given by Equation 8 is a sum of sinusoidal 
components and the steady-state solution to Equation 1 with this ub is, 

v       2_/ Un 

tf.<2. 

N0{2fiTf) 
cos «G)f+*   (2 

\ 

\ 
-cos(n<o?) 

(9) 

where un=2imX(n)/L. The corresponding shear stress is given by, 
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(10) 

A wave described by stream function theory is uniquely defined by the two 
ratios h/L0 and H/L0 (Dean 1990), where A is water depth, H wave height, and the 
subscript o denotes deepwater conditions. Waves with identical values on h/L0 and 
H/L0 yield the same dimensionless velocity ub/(H/T); thus, the quantity HIT appears 
as a normalizing "velocity". A friction factor derived for a stream function wave will 
depend not only on the normalized roughness kn/H, but also on h/L0 and H/L0. The 
friction velocity may be computed by using rbav, which is obtained from time 
integration of the absolute shear stress over a wave period T. 

RESULTS 

Data From Jonsson (1980) 

Measurements by Jonsson (1980) of uw in a water tunnel for a sinusoidally 
varying ub with the amplitude u0 was employed as a first step to validate Equation 
1 for describing the velocity in the TBL. It was verified that Equation 2 produced 
identical results to Equation 6, and the steady-state portion of the solution was used 
for the comparison with the data. Jonsson (1980) presented data for two cases: 1) 
u0=2.11 mis, T=8.39s, kn=2.3 cm, and 2) u0=1.53 mis, T=7.20s, kn=6.3 cm. 
Comparison between the analytical solution and the measurements was performed for 
the phases tIT = 1/2, 518, 3/4, 7/8, and /. The Reynolds number Re for Cases 1 and 
2 were 6.0 106 and 2.7 106, respectively, based on Ab and u0. The roughness values 
given by Jonsson were employed and there were no free calibration parameters. Two 
different definitions of u*m were used in the comparison, namely u*m=(rbmax/p)1/2 

andu*m=(rbav/p)1/2. 

Figures 3 and 4 display the comparison between the analytical solution and 
the measurements for Cases 1 and 2, respectively. In general, the difference between 
the two formulations for u*m is small, although using Tbav seems to consistently 
produce somewhat better agreement with the data. Some of the overshoot effect in 
the data is not entirely captured by the analytical solution, especially for Case 2. The 
computed wave friction factors fw for Cases 1 and 2 were 0.019 and 0.033, 
respectively, when rbmax was employed, and 0.014 and 0.025 when rbav was used. 
Using different formulations for «»m will not change uw as much as it will affect the 
calculation of the shear stress. 
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Figure 3.        Calculated and measured velocity in the turbulent boundary layer for 
Case 1 from the data by Jonsson (1980). 
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Figure 4.        Calculated and measured velocity in the turbulent boundary layer for 

Case 2 from the data by Jonsson (1980). 
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Data From Nadaoka et al. (1994) 

Nadaoka et al. (1994) measured uw in an oscillatory tunnel using air for a 
free-stream velocity that was asymmetric. The measurements used here to evaluate 
the TBL model involved a velocity ub that was of cnoidal type with a positive peak 
velocity of 2.50 m/s, a negative peak velocity of 1.05 m/s, and a period of 5 s. A 
cnoidal wave producing a non-dimensional time variation in ub corresponding to the 
experimental conditions implies an Ursell number of Ur=57.8, although during the 
experiment ub was generated to agree with the velocity induced by a hyperbolic 
wave. In general, such a strongly nonlinear wave provides a severe test for the 
linearized TBL equation; neglecting the nonlinear terms in the governing equation 
assumes that the particle velocity is small compared to the wave phase speed 
(Madsen and Wikramanayake 1991), which may not be the case for strongly 
nonlinear waves. However, for data obtained in oscillatory tunnels the spatial 
gradients should be small enough to permit that the nonlinear terms are neglected. 

Instead of using a cnoidal or hyperbolic wave to describe ub in the solution 
given by Equation 2, ub was approximated using a wave described by 20-order 
stream function theory (H=5.26 m, T-10.3 sec, and h=8.22 m; the resulting 
velocity as a function of non-dimensional time is shown in Figure 5 together with the 
generated hyperbolic velocity variation during the experiment). Stream function, 
cnoidal, and hyperbolic theory produced essentially identical variation in ub with 
time, but the former theory allows direct calculation of uw from Equation 9 for 
steady-state conditions without having to compute for the transient phase, which is 
necessary if the general solution in Equation 2 is employed. The bed consisted of 
spray-painted aluminum and was judged to be hydraulically smooth during the 
experiments. Thus, the length scale z0 is independent of the boundary roughness and 
may be calculated from zo=(3.3valu*n)l30 (Madsen and Wikramanayake 1991), 
where va is the kinematic viscosity for air. The air temperature was about 10 deg 
during the experiment and the corresponding Reynolds number was Re=2.810s. The 
origin of the vertical axis in the measurements was assumed to approximately 
coincide with z0. 

Since smooth turbulent flow prevailed during the experiment, z0 could be 
obtained from v and u*m and no calibration was needed to estimate the bed 
roughness. The representative shear velocity was based on Tbav, which was 
determined through time integration over T. A value of u*m=0.065 m/s was thus 
calculated implying zo-0.024 mm. Figure 6 displays measured and calculated 
velocity profiles for selected phase values of t/T. The maximum positive peak in ub 

occurred at about 0.18t/T, the maximum negative peak at 0.68t/T, and zero velocity 
at 0.36t/T. The model captures the overall features of the velocity variation in the 
boundary layer, but the overshoot effect is not well predicted by the model, 
especially during the phase of flow reversal in the boundary layer in connection with 
large gradients in the wave velocity. The simple eddy viscosity model employed in 
the linearized TBL equation is most likely the reason for the disagreement between 
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the model and the measurements (Sleath 1987), although lack of detailed information 
on z0 and the use of stream function theory to describe ub may also contribute to the 
discrepancy. 

T 

  hyperbolic wave 
(used by Nadaoka et al. 1994) 

  stream function wave 
(used in present calculations) 

Figure 5. 

0.5 1 
Non-Dimensional Time (t/T) 

Hyperbolic wave velocity generated by Nadaoka et al. (1994) in their 
experiment on turbulent boundary layers and the velocity from a 
stream function wave that approximates the hyperbolic wave. 

Figure 7 shows the computed normalized shear stress as a function of time 
at selected elevations based on the experimental conditions from Nadaoka et al. 
(1994). The time variation in the shear stress differs significantly from ub and r is 
completely asymmetric. This feature of the shear stress under nonlinear waves is 
important to include in for example detailed sediment transport calculations that 
employ the instantaneous shear stress to compute the transport rate. 

CONCLUDING REMARKS 

The analytical solution presented in Equation 2 is valid for any time-varying 
free-stream velocity, although from a physical point of view the solution is only 
interesting when the conditions underlying the linearized TBL equation are fulfilled. 
For example, the solution will describe the temporal growth of a TBL under a uni- 
directional current (compare Figure 1); however, the boundary layer will grow 
infinitely large and at some time the assumption that the layer thickness is small 
compared to the water depth will be violated and the solution lacks physical meaning. 
Also, for strongly nonlinear waves where the convective terms in the momentum 
equations are significant, the linearized TBL equation will yield results that are not 
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Figure 6.       Calculated and measured velocity in the turbulent boundary layer 
using the asymmetric velocity case from Nadaoka et al. (1994). 
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Figure 7.       Calculated time variation in the shear stress at selected elevations for 
the experimental conditions given by Nadaoka et al. (1994). 
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reliable. For the case tested from the data by Nadaoka et al. (1994) the linearized 
equation failed to produce accurate predictions, especially during the phase of flow 
reversal in the boundary layer in connection with large gradients in the wave 
velocity. This is mainly attributed to the simple eddy viscosity model approach 
employed which fails to realistically capture the variation in the turbulence during 
a wave cycle (Sleath 1987). A time-varying eddy viscosity would most likely 
improve the agreement with the data, but such a formulation would not permit an 
analytical solution of the governing equations. 

However, the simple eddy viscosity model of Grant and Madsen (1979) 
seemed to produce acceptable results for a sinusoidal wave velocity, even if v 
increases without limit with distance from the boundary. This observation pertains 
mainly to the velocity profile, whereas the shear stress is more sensitive to the eddy 
viscosity formulation because of the dependence on the velocity gradient. Similarly, 
the velocity profile is not overly sensitive to the choice of representative friction 
velocity, in contrast to r which is more affected by the u*m used. It was found in the 
present study that a u*m based on the mean absolute shear stress during a wave cycle 
produced somewhat better agreement with data for a sinusoidal wave than using the 
maximum absolute shear stress. 
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