
CHAPTER 180 

Nonlinear Wave Transformation 
over a Submerged Triangular Breakwater 

Lifen DongJ Akira Watanabe and Masahiko Isobe2 

Abstract 

This study deals with wave transformation over a submerged triangular break- 
water that is composed of a series of elements with a triangular horizontal cross- 
section. The idea of such a triangular breakwater is founded on the use of the 
wave refraction due to peculiar spatial change in water depth around it. 

A numerical model is developed to predict nonlinear wave transformation over 
and around the breakwater on the basis of fully nonlinear wave equations proposed 
by Isobe (1994). Laboratory experiment has also been conducted in a wave basin. 
The validity of the numerical model is examined by comparing the computations 
with the measurements. 

1.    Introduction 

When waves propagate over a submerged triangular breakwater, wave refrac- 
tion will happen. The superiority of a submerged triangular breakwater lies in its 
capability of controlling the wave direction as well as the height as compared to 
conventional submerged breakwaters with rectangular cross-section. For exam- 
ple, a breakwater as shown in Fig. 1 (a) can control even the longshore current 
through the change in the wave direction, whereas the one as illustrated in Fig. 
1 (b) may be employed to increase the wave height in the locations where the 
waves converge for purposes such as effective wave energy use and surfing. 

This paper presents the results of numerical computation based on fully non- 
linear mild-slope equations proposed by Isobe and compares them with those of 
a laboratory experiment for breakwaters of the type (b). 
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Fig. 1 Two types of submerged triangular breakwaters. 
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2.    Numerical Model 

2.1    Governing equations 

The mild-slope nonlinear equations proposed by Isobe (1994) are as follows: 

K% + V(4,/,Vy» - Ba0f0 + (C0a - CaP)VUVh + ^-ZUPVvVh = 0 (1) 

gr, + Z$& + IzfflVWU + l^^f.fe + ^Z^VfpVh = 0     (2) 

where Z% = Za\z-V, h is the water depth, and the water surface elevation r\ and 
the function /„ are unknown variables. The vertical distribution function Za is 
related to the velocity potential <j> and defined as 

N 

<p(x, y, z,t) = J2 Za(z, h{x, y))fa{x, y, t) (3) 

Za{z,h{x,y))=(l + j^2a (4) 

The coefficients Aa0, Bap and Ca0 can be obtained from Za by 

/n 
ZcZpdz (5) 

•h 

R       tn dzadzp Bl* = L-te!hdx (6) 

0a 
n dz, Wl^/f^ (7) 

2.2    Boundary conditions 

For the present case, the following perfectly reflective boundary condition is 
imposed on the side boundaries by virtue of the symmetry of the structure and 
the resulting wave field. 

I- 
By substituting the expression of </> into Eq. (8), the following two expressions 

are obtained as side boundary conditions. 

!=»•   t-° (9) 

The Sommerfeld radiation condition is used on the onshore open boundary. 
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The substitution of <j> yields the onshore boundary conditions as follows: 

in which n is the length of the mean direction vector of transmitted waves and C 
denotes the wave celerity. 

The offshore boundary condition is given by 

- 9<l>     nd(j> _    d<t>0 .    . 
cosar— - C— = (1 + cosar) —- (12) 

at        ox at 

where <j>0, the potential of the incident waves, is expressed as 

N 

4>o — /__, Zafao = Zafa0 (13) 
a=0 

Substituting of the expressions of <j> and </>o into Eq. (12), we obtain 

cosar— - C— = (1 + cosar)— (14) 

cosar--- G—— = (1 + cos ar)——- (15) 
at ox at 

where T}Q is the water surface elevation of the incident waves and ar is the mean 
direction of reflected waves. 

2.3    Expression of incident waves 

Even in the computation of nonlinear wave transformation, the incident waves 
will be reasonally expressed by a small amplitude wave theory if the Ursell num- 
ber is not so large at the offshore boundary. Assuming that the incident waves 
are monochromatic sinusoidal waves propagating along the x-direction, their po- 
tential 4>0 can be expressed as 

a0g cosh k0(z + h0) 
<f>o    = —--, sm(k0x-crt) (16) 

a       cosh Ko«o 
N 

a=Q 

which corresponds to the water surface displacement r)0 given by 

rjo = a0cos(kox — at) (18) 

where a0 and fco are the amplitude and the wave number of the incident waves, 
ho is the offshore water depth, and a is the angular frequency. 

By expanding cosh ko(z + ho), <j>o can be expressed as 
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*  a0g      (k0h0)
2a „ , f        z\2a 

From this equation we obtain 

*<* = —W¥*YVT 
sin(fcoX - ^ W <x  (2a)!coshfc0fto 

2.4    Finite difference equations 

Numerical solutions of the governing equations are obtained using a finite dif- 
ference technique. Central difference and forward difference are adopted in space 
and in time, respectively. To the nonlinear equations into a finite difference form 
for the present two-dimensional problem, ADI (Alternating Direction Implicit) 
scheme (Fletcher, 1987) is employed, namely, Eqs. (4.1) and (4.2) are splitted 
into x-sweep and y-sweep finite difference equations. 

£-sweep 
During the first half-step the following discretization is made. 

m+i ,m+§ ,m+| ,m+i 

7„ %j       ~ Vi,j . Jp{i+l),j + J0(i-l),j       ZJ0i,i 
a     At/2      + A"^ A^2 

fm _i_  fm   o f m t 
,   A Jpi,3 + l ~T Jpi,j-1       LJf3i,3        n     fm+2 

+ Aa0i,j ^"5 Vapjpij 

A A fm+*       -  fm+* 

2ACE 2Ax 

,   ^-a0i,i+l ~ ^qfft,j-l J0i,j+1 ~ J0i,j-\ 
+ 2A^ 2A^ 

m+§        _    -m+i 

+(C*. - Ga/J) — — 

+{O0« - CaP) — — 

+ dh    afpij   y       2Ax 2Ax 2 Ay 2Aj/        J 
= 0 (21) 

f
m+5 fm , / fm _  fm fm+2       _   fm + 2 

m+2    1    r7r,J0i,i     ~ J0i,j    .    1 7I1 V7)  I  •/7(«+l).J       •/T(»-l),i •//?(i+l),j        •/ff(i-l)j 
9Vt>>    + ^      Ai/2       + 2^Z" I 2A^ 2A^ 

1 / fm fm fm f• \ lfl71/)7'1 1 
I   -1 ?n yV I Jli,3+l        J"ti,j-1 J0i,3+1       JPU-T-)    I    IUZJ

~I
UZJ

P fm    fm+l 
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+ J0(i+l),j        J0(i-l),j ni+l,j - ni-l,3 

2A* 2Ax 

dh J'li'3 0 

= 0 

J0i,j+1       J/3%,3-1 "»,J+1 ~ "i,j-l 

2Ay 2Ay 

(22) 

in which, Ax and Ay are the space intervals and At is the time interval.   The 

quantities ?/,- • 2 and /^ •2 are the unknowns, whereas r)•j, fjfij and other param- 
eters are given in the previous time step m. 

y-sweep 
During the second half-step the following discretization is made. 

„m+l          -»+!                        f
m+2         ,    /-m+2 

' r A-a0i,j  

/.m+5 

At/2 

,   4 //3»,j+l + J0i,j-1       ZJ0 

Ax2 

'•3 D      rm+l 
"'" ~ ~~ &aPJpi,3 

+ 

+ 

,m+j       _     m+j 
A»/3(.+ l),,y ~ A-a0(i-\),j J0(i+l),j       J/3(i-l),3 

2Aa; 2Aa: 
A A rm+l     _   rm+l 

•TlgfoV+l ~ S\g0i,j-1 J 0i,j+l        J0i,j-l 

2Ay 

+ (Cf3c — Cap) 

+ {Cf3a — Cap) 

dZl I  P_ rrri rm+l 
+   Qh   ^«J0i,3 

2Ay 
m+i       _  fm+\ 

J0(i+l),j       J0(i-1),3 ni+l,j - ft»-lj 

2Ax 2Az 
rm+l     _  rm+1     7 7 
J0i,j+l        J0i,j-l ni,3 + l ~ ni,3-l 

2Ay 2Ay 

V»+i,j       li-1,3 "j+ij ~ "t—i,j   ,   '/ij+i      '/i,i-l »t,j+i ~ "ij-i 

2Ax 2Ax 2A«/ 2 Ay 

(23) 

rm+l _   r"» + j /   r»'Tj       _   ,»'TJ       pj       _  r"'xj 
o„r".+1 _L zv   0i'j        j0i'j     J- -7.7>71 I •/-v('+1).i      •

/
-Y(«-I),J •y/3('+l),i      J0(i-i),3 

+ 2^0 

0        At 

< r"»+5 

V 

+ ^Z} 
rm+i rm+9 

2Ax 

r»"f 2          j-"'T2    rm+l rm+l    \         1 f)7r] ay'O 
Jfi,3+1        Jli,3-1 J0i,3+1 J0i,3-i   \    L   L UZj~t ° ^ 0 

2A 

•m+i rm+i 

2 ^   92 
rm    rm+l 
Jfi,jJ0i,j 

I   f        2        _   f'""r2        7 1 rm+l     _   rm+l     7 7 
,        J0{i+T-),3        J0{i-l),j ni+l,j — »»-l,j    ,    J0i,3+1.        J0i,j-1 ni,j+l ~ "i,j-l 

2Aa; 2Ax 2Aj/ 2Ai/ 
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8Z" 7  fm    yl\ 

dh J•*f> 
= 0 (24) 

in which f]^1, fplj1 are the unknowns, and r/^j 2, fgij2 and other parameters 
are given at the previous time step (m + |). 

2.5    Numerical solutions 

Solutions of the finite difference equations are obtained by using the boundary 
conditions given above. In the numerical computation, the intervals of space and 
time are taken as follows: Ax < Lo/20, Ay < Lo/20, At = T/250, where, T is 
the wave period and LQ is the wavelength. 

At any time step m, the water surface elevation f]m{xi,yj) can be obtained 
by solving the above equations. Then the root mean square value of the water 
surface displacement 7?ITOS(a;,-,2/j) can be given by 

'/nnsi^n Uj) \ Y,vl(xi,yj)/n (25) 
\ m=l 

where n is the total sampling number of water surface elevation within several 
wave periods. 

3.    Laboratory Experiment 

3.1 Experimental setup 

In order to observe the wave deformation process and to examine the numerical 
computation model, a two-dimensional laboratory experiment on wave transfor- 
mation over submerged triangular breakwaters has been made in a wave basin, 
of which the flow domain is 3.55x0.75 m. A flap-type wave maker is equiped to 
generate regular waves, and a wave absorber is placed on the onshore boundary 
in order to avoid the wave reflectoin. 

Only a half element of the breakwater has been taken in the experiment (as 
well as in the computation) because of the symmetry of the breakwater as shown 
in Fig. 1 (b). Two types of model breakwaters have been modeled. The first one 
has a purely triangular horizontal cross-section with seaward and shoreward side 
slope of 1/3, whereas the second one has a cross-section composed of triangular 
and rectangular parts as shown in Fig. 2. In all the cases, the direction of incident 
waves is in parallel to the z-axis and no wave breaking over the breakwater has 
occurred. 

3.2 Data acquisition and processing 

The water surface displacement was measured at many points with small spac- 
ing in the rc-direction along the nine sections shown in Fig. 2 with the capacitance- 
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Fig. 2 Experimental setup. 

type wave gages. After preliminary processing, the root mean square value of the 
water surface elevation 1]-^^ was obtained for every point. 

^rnis 

V 
Y,V2(ti)/n (26) 

By utilizing the separation technique for incident and reflected wave compo- 
nents (Goda and Suzuki,1976) from two adjacent wave records measured along 
the x-direction at the same time, the amplitude of incident waves a0j was eval- 
uated. Then the root mean square of water surface displacement of the incident 
waves was obtained by using the following expression. 

?70rn 

\ 

v^ aoj 

3=1 

(27) 

where m is the number of incident wave components. 
Finally relative values of the water surface elevation ?/rms/7?orms were calculated. 
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4.    Results and Conclusions 

4.1     Results 

For the two types of breakwaters, the experiment and computation were carried 
out under various incident wave conditions. In the numerical computation, the 
mean direction angle of reflected waves ar was taken as 0.0 degree for all the 
cases, and the mean direction of transmitted waves was assumed to be parallel 
to the ^-direction at any grid point on the onshore boundary. The range of a in 
the vertical distribution function Za(z) is taken from 0 to 3, i.e., four terms are 
taken in the expression of velovity potential <j>. 

Fig. 3 shows examples of the comparisions between the measurements and the 
computations of the relative root mean square of the water surface displacement 
along the sections (1), (3), (5), (7) and (9) for the first type of the breakwater. The 
total water depth is 15 cm, the breakwater height is 10 cm, and the incident wave 
height and period are 0.85 cm and 1.0 s. Fig. 4 shows the comparisions between 
the measurements and the computations of time histories of the water surface 
displacements at several points along the x-direction for the same condition. Both 
the figures demonstrate a rather good agreement between the measurements and 
the computations. 
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Fig. 3.1 Distributions of RMS of surface displacements. 
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In Fig. 3, we can see significant variations in the cross-shore distributions of 
water surface displacements for different sections. Usually the water surface dis- 
placement in the region behind the breakwater increases from section (1) to sec- 
tion (9); the mean relative water surface elevations are less than unity from 
sections (1) to (7), while they are larger than unity for the section (9). The mean 
value of the transmission coefficients reaches a value of 0.85. 

In Fig. 4, a remarkable change in the time histories of the water surface dis- 
placements along the ^-direction can be seen. In the region before the breakwater, 
the water surface elevation at position 1 (x =0.5 m) behaves without peculiarities, 
whereas the time history at position 4 (x =2.0 m) on the top of the breakwater 
shows strongly nonlinearity with steep peaks. In the region behind the breakwa- 
ter, two peaks appear in the wave profiles at position 5 (x =2.5 m), i.e., higher 

harmonics exist. 
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Fig. 4.1 Time history of the surface displacements. 
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4.2     Conclusions 

It has been shown that the agreement between the measurements and the com- 
putations is good enough for practical use. For all the other cases, the agreement 
has been as good as for this case. It will be concluded that the present model 
reproduces well not only the root mean square wave height distribution but also 
the temporal variations of surface displacement at every point even when higher 
harmonic components strongly appear above and behind the breakwater owing 
to the high nonlinearity of waves. 

These results indicate the validity of the present model as well as the interesting 
effects of the wave direction change due to the presence of a submerged triangular 
breakwater on the wave deformation. 
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