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I. ABSTRACT 

Tidal waves or tsunamis are long water waves of small steepness generated by 
impulsive geophysical events of the seafloor or by coastal landslides. Whereas 
their coastal evolution is now well-understood, their generation is not. Until 
recently (Tadepalli and Synolakis 1994a, 1996), numerous anecdotal records of 
historic tsunamis where shorelines significantly retreated before the tidal waves 
advanced up the coastline have been disregarded; the prevailing paradigm for 
tsunami studies is the modeling of the evolution and runup of a single-hump 
leading-elevation waves which offshore have solitary-wave profiles. We propose 
a model for the leading-wave of tsunamis to explain why the coastal manifesta- 
tion of most tsunamis suggests a leading-depression N-wave, a waveform which 
causes the shoreline to recede before advancing up the beach. Farfield, we use 
the Korteweg-De-Vries equation, and we find that N-waves of geophysical scales 
do not fission over transoceanic propagation distances and no leading solitary 
waves emerge. Nearshore, we use shallow water theory to calculate the evo- 
lution and runup of emerging non-breaking waves, and we observe that they 
evolve according to Greens' law (Green, 1837, Lamb, 1945, Synolakis, 1991). 
We discuss the effects of certain ground deformation parameters and provide 
one application of our theory by modeling the Nicaraguan tsunami of September 
1, 1992. 

II. INTRODUCTION 

The study of the generation, evolution and coastal effects of tidal waves 
is one of the classic problems in coastal engineering. Tsunamis are generated 
by impulsive geophysical events such as submarine earthquakes, volcanoes and 
landslides. The understanding of their coastal effects has progressed consider- 
ably in the last four years, both due to detailed field observations of tsunami 
inundation (Satake et al, 1993, Yeh et al, 1993, Synolakis et al, 1994, Imamuraet 
al, 1995) and due to the availability of large scale laboratory data (Briggs et al, 
1994 and 1995), all of which have helped validate inundation calculations in hy- 
drodynamic models. Yet, the process of tsunami generation is less-understood, 
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and only very recently there has been an effort to understand the effects of seis- 
mic parameters on the leading-wave evolution at generation (Geist and Yash- 
ioka, 1996). In fact as Tadepalli and Synolakis (1994) showed, the sign of 
the leading-wave which is a reflection of the direction of ground motion is of 
paramount importance in the determination of coastal effects. 

Several recent earthquakes in Nicaragua [Sept. 1, 1993], Flores, Indone- 
sia [Dec. 12, 1992], Okushiri, Japan [July. 7, 1993], East Java, Indonesia 
Jun. 6, 1994], Kuril Islands, Russia [Oct. 4, 1994], and Mindoro, Philippines 
Nov. 14, 1994] have produced tsunami waves which caused nearby shorelines 

to first recede before advancing. These observations have challenged further 
the prevailing paradigm for studying the coastal effects of tsunamis, i.e., the 
canonical model of a Boussinesq solitary wave profile propagating over constant 
depth and then climbing up a sloping beach (Liu et al, 1991). To quantify 
the persistent field observations and tsunami folklore, a class of water waves 
referred to as N-waves have been proposed (Tadepalli and Synolakis, 1994a) for 
nearshore-generated tsunamis, and it was observed that at least for three dif- 
ferent types of N-waves, leading-depression N-waves climb up higher on sloping 
beaches than leading-elevation N-waves with the same leading-wave amplitude. 
They also derived asymptotic relationships referred to as runup laws, whose util- 
ity was recently demonstrated (Geist and Yoshioka, 1996) to supplement numer- 
ical computations for a Cascadia Subduction Zone giant earthquake. However, 
unresolved questions persist as to the long-distance hydrodynamic stability of 
these waves. Also, given the uncertainty associated with inferring the seafloor 
displacement from distant strong-motion records (Yamashita and Shato, 1974) 
there is little understanding as to the relative effects of the vertical deformation, 
of the deformed or of the relative magnitudes of subsidence and uplift, forcing 
laboratory modelers to work exclusively with solitary waves or periodic long 
waves, and numerical modelers to routinely introduce arbitrary large "amplifi- 
cation" factors to fit their results to runup field observations. We will attempt 
to address these questions here, by first deriving an initial sea-surface profile 
for the leading wave of a tsunami from a specification of the sea-bottom de- 
formation and by demonstrating that this profile encompasses as special cases 
all N-wave like and solitary wave like profiles used in earlier studies (Synolakis, 
1987, Tadepalli and Synolakis 1994a, Carrier, 1993). We then will discuss their 
stability with respect to fission in far field evolution, and we derive nearshore 
evolution relationships. We will then obtain asymptotic estimates of the relative 
effects of some generation parameters on the runup of non-breaking waves. 

We therefore propose as a model for the leading wave of tidal waves the 
following normalized waveform, 

V(x) = {£g.H).{x - X2)sech2[7(x - 9)}\t=0 (2.1) 

where 7 = JSHpo/A, 0 = Xi + ct, L = Xi — X?, c — 1 and p0 is a steepness 
parameter. We have nondimensionalized all variables with the offshore depth 
d, and in this normalization, c — 1. £g < 1 is a scaling parameter defining the 
crest amplitude introduced only for reference to ensure that the wave height 
(2.1) is Ti; £g can be chosen to fit desired field-inferred surface profiles. H 
and the wavelength of the profile inferred from (2.1) are vertical and horizontal 
measures of the ground deformation respectively. 

When the crest of the wave at generation is ahead of the trough, we will 
refer to this wave as a leading-elevation N-wave (LEN); when the trough starts 
propagating ahead of the crest, we will refer to these waves as leading-depression 
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N-waves. As suggested by Carrier (1993), multi-lobe waves similar to (2.1) can 
be described by combinations of Gaussian profiles; we prefer (2.1) because it 
allows direct derivation of asymptotic results. Here, for brevity, we will refer to 
all multilobe waveforms as N-waves. We will also use the qualifier non-breaking 
to refer to waves which do not break in the specific evolution problem, and 
we note that the same leading wave which evolves to its maximum penetration 
without breaking on a steep beach may break on a gentle beach; in the steepness 
range of geophysical interest the leading waves of most tsunamis do not break 
on most natural beaches*, but they may break when advancing up rivers, during 
overland flow, or when focused on headlands. 

III.   TIDAL WAVE GENERATION 

To motivate the generation of N-waves and our particular choice of the 
initial profile, consider the normalized linearized shallow-water equation (LSW) 
for propagation over constant depth, long believed as the physically realistic 
generation approximation (Tuck, 1972, Carrier, 1966) i.e., 

%t - f]xx = Kt, (3.1) 

and we consider the following seafloor motion, 

2£M 

7 
-tanh[7(x - 6>)] (3.2) 

where ho(x,t) is the ground motion, measured from a horizontal datum. Most 
submarine earthquakes are bipolar, and ho(x,t) is a motion with both a sudden 
uplift and subsidence such as would occur with a normal or oblique thrust 
fault. In nature, the ground deformation would stop quickly after the rupture 
and the deformation would not propagate indefinitely as the definition of h0 

suggests. Nonetheless, since our objective is only to determine an initial profile 
valid only for short times, the above ground deformation is adequate. It can 
be verified directly that (2.1) is an exact solution of the equation (3.1) with 
ground deformation given by (3.2). The ground deformation that generates a 
leading depression N-wave is shown in figure 1. Other ground motions (Tuck, 
1972, Carrier, 1966) would also produce multi-lobe waves, but not of the same 
mathematical form; the advantage of the ground deformation h0 in (3.2) is that 
it allows for the explicit evaluation of the nearfield and farfield effects in terms 

t Since quite often tsunamis/tidal waves are reported in the press as giant walls 
of breaking water, we quote from the Proceedings of the 1979 NSF Workshop 
on Tsunamis, reported by E.O. Tuck and P. L.-F. Liu who wrote, "of course the 
physical mechanism has nothing to do with astronomical tides, but the common 
term "tidal waves" surely arose because most tsunamis are quite satisfactorily 
described as giving the appearance of a 'fast-rising' tides ... we should be pleased 
that it (the term tidal wave) provides a correct picture of what actually happens 
... A near vertical moving wall of water as in movies like the Poseidon Adventure 
is unlikely to occur in the open ocean and it is the exception rather than the 
rule for coastal impact of tsunamis." Therefore we will resurrect the term tidal 
wave and use it interchangeably with the term tsunami. 
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of simple and intuitive asymptotic formulae. 
To appreciate the range of surface profiles that (2.1) describes, figure 2(a) 

compares a classical Boussinesq solitary-wave profile with the surface profile 
obtained by (2.1), and for reference, with an isosceles* leading-elevation (LEN) 
wave with the same leading wave steepness po — 1 and a Gaussian profile sug- 
gested by Carrier (1993). Figure 2(b) shows leading-depression (LDN) profiles 
generated by equation (2.1) for a fixed H and different values of L and, for 
reference, an isosceles LDN and a combination of Gaussian profiles (Carrier, 
1993). 

As an initial condition we will use the N-wave of (2.1), and then we will 
solve the the Korteweg-De-Vries equation to calculate transoceanic propagation 
over constant depth. Once the wave arrives nearshore, we will use the LSW 
equation (Liu, 1991); it is well-established that for the non-breaking waves we 
are considering here, dispersive effects do not have sufficient time to manifest 
over the relatively short propagation distances on a sloping beach. We will 
show that both LDNs and LENs evolve according to a relationship equivalent 
to Greens' law (1837). Finally, we will provide results for the maximum runup 
and we will discuss the relative importance of certain generation parameters. 

IV. PROPAGATION DISTANCE FOR SOLITARY WAVE 

EVOLUTION 

Since, we are most interested in the the effective propagation distance over 
which the leading solitary waves emerge, we propagated LDN waves by solving 
the KDV equation numerically (Synolakis, 1990). The prevailing paradigm 
would suggest that leading solitary waves should emerge rapidly, and therefore 
the leading tidal wave attacking nearby coastlines would be a solitary wave. 
LDN waves with geophysically-realistic initial height-to-depth ratio of 0.001 
were practically unchanged after a transoceanic propagating distance of 2000 
depths (see figure 3 (a)), indicating the hydrodynamic stability of N-waves and 
explaining anecdotal reports of LDN waves striking Hawaii after the Chilean 
1960 event. No distinct solitary waves emerge even when LDN waves with 
initial height-to-depth ratio of 0.01 (much larger amplitude than a possible 
transoceanic tsunami) are propagated through twice the typical transoceanic 
distances, of about 4000 depths (see figure 3 (b)). 

V. COASTAL EVOLUTION OF N-WAVES 

We will now solve the propagation problem described by linearized shallow 
water equations (LSW) for variable depth ho(x), i.e., 

T]u - {'qxh0)x = 0 (5.1) 

normalized with the offshore depth d as the characteristic length scale, and 

* Isosceles N-wave is a wave with equal peak and trough heights. 
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Jg/d as the time scale, ho{x) = x/cot/3, when x < cot/3 and h0(x) = 1 other- 
wise. It is widely believed that these equations describe the essential physics of 
the coastal tsunami evolution problem well (Liu et al, 1991). When the incident 
wave from infinity is of the form /f^ $(w)e_8W'c?w, then the transmitted wave 
to the beach is given by : 

W'V-V-o,    J0(2Wcot/?) - *J1(2wcot)9) ' {b-2) 

where $(w) is the transform function of the incoming wave. When x = 0, R(t) = 
7/(0, i) and its maximum value R is the maximum runup i.e., the elevation above 
the shoreline at the point of maximum penetration of the wave. Carrier (1966) 
and Synolakis (1987) have proved the runup invariance between linear and non- 
linear theory, and it has been repeatedly (Synolakis, 1991, 1993) shown that 
linear theory describes well the evolution of the maximum height of long waves 
which offshore had a Boussinesq solitary-wave profile. Therefore, without loss of 
generality, we will use linear theory for non-breaking waves we are considering 
here, to calculate the evolution of the wave height and the maximum runup. 

The transform $(w) of (2.1) is obtained through contour integration (Tade- 
palli and Synolakis, 1994a) along a semi-circular contour in the upper half plane 
and is given by : 

The evolution of this wave is obtained by substituting equation (5.3) into equa- 
tion (5.2). We write r)(x,t) = Fi(x,t) + F2(x,t) + F3(x,t) and introduce 
9 = X1-X0- ct. Then, 

iu>6 
v f    *     A£e r fx ^sh(^)J0(2u;VSo)e- 
Fi(x.t) = —L T ,   \r . . T .„   v .   du>. (5.4) 

Noting that JQ{Z) — iJ\(z) is entire in the upper half-plane (Synolakis 1988, 
Tadepalli and Synolakis, 1994b), we use contour integration and compute the 
Laurent expansion to obtain : 

F (x t) - ^ 2j;^(-ir+1^o(4n7V^o)e-^ 

where -ys = JdTi/A.  Using the asymptotic expansions for the modified Bessel 
functions (Abramowitz, 1970), we approximate F\ by 

If! ^2        TO Fi = i£°Lijn E (-ir+v-2^\ (s.e) 
6 n '     n=l 

where <f>' = X\ + X0 — ct — 2^/xX0. Similarly we find that 

1/4 
n=l 

F3(x,t) = -~^l E (-l)"+1e-2^', (5.7) 
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Air2E   °° 
F3(x,t) = - ££an (5.6 

SlsPo n=1 

where, 

a,_+2n7iv / ) J\  ) sinh2(f^) \ /(t 
cosr 

an =    lim .(w - 2n7i)2/(^)eswff x   ,  ^/J^ U + »w0 + ^^ j> ,       (5.9) 

with. 

r<  ^ .._, J0(2a;v/^Xo) 
/M~ J0(2^X0)-zJ1(2u;Xoy 

(5'iUj 

On further simplifying we find that 

_2j-rrVM3 

and therefore, 

{|_2„^je-W, (5.11) 

where js — J3H/A.  Using the asymptotic expansions for the modified Bessel 
functions (Abramowitz, 1970), we approximate F\ by 

1 c ^2      oo 
Fl = T£°Lh& £ (-1)n+1"e_w> (5-13) 

n=l 

where </>' = X\ + X0 — ct — 2\fxXo. Similarly we find that, 

oc -, oo 

F,(x,t) = -^ITJ £ (-l)"+1e-2^', (5.14) 
VPO" n=l 

and 

4x2F   °° 
/?3(a;,i) = -Z-^X)0» (5-15) 

where, 

cosr 
a„ ^ll/^,^^ - = Jfe<w - 2»7i)VHe- x -^ |1 + ^ + -^ ^      (5.16) 

with, 
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f^      Jo(2uX0) - IJX{2LOX0) ' ^•17^) 

{^-2«7^}e-2^', (5.18) 

On further simplifying we find that 

  2(-l)Vp0 f3 

and therefore, 

Summing (5.13), (5.14) and (5.19) and evaluating the series expansions, we 
obtain 

rj(x, t) = r]0 [7d0sech2(7^') + -e-^'sech(7<//)] (5.20) 

where i/o = 4£fl7s/(3y^/i1/4), 7s = y/sH/i, <j> = Xi + cot/? - rf, </-' = <j> - 
2\/xcotf3 and do = L — <f>'. Note that only 7/0 depends on the local depth h. 
Solving drj/d<j)' = 0, the extremum i]ext for any location x, we obtain 

,»?ext(a;)|_ Fjl^'J /-91x 
I    w     I-      A1/4 ^-^ 

where ^ is the phase corresponding to »7ext- Therefore for any given initial LEN 
or LDN wave, ?7ext is independent of L and depends only on the local depth h. 
N-waves are therefore seen to evolve far from the shoreline in a manner similar 
to what is referred to as Greens' law (Green, 1837, Lamb 1945, Synolakis, 1991) 
whether a leading-depression or leading-elevation wave. 

VI.   RUNUP OF N-WAVES 

To calculate the maximum runup, the maximum of equation (5.2) at x = 0 
has to be evaluated; proceeding as in the previous section, we find that 

00 , -1 •. 

,(0,t) = Ro £ (-1)"+V   2ni(L -<f>) + -\ e"2^, (6.1) 
n=l *• Ai 

where R0 = ^£g^
2(2Trcot(iy /p^ . Here, we compute the maximum runup of a 

N-wave (2.1) explicitly; in Tadepalli and Synolakis (1994a), only an upper limit 
had been calculated. We first note that the phase <f>m at the extremum runup 
satisfies 

3(L     ^-^Hrnie-^.1 (6-2) 
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Denoting 

oo 

S(<t>m) = £ (-l)n+1nh-2n^, (6.3) 

we rewrite the equation for 4>m as 

dS(cf>m)        35'(</>m) 
2{L - <f>m) 

(6.4) 

Solving for S((j>rn) for LDN (L — (j>m > 0), we find that S((j>m) — S0(L — </>m) 2. 
We then note that 

/oo 

S(<f>m)d<f>m = £ (-l)n+Ve-
2n,*» (6.5) 

and obtain the maximum runup of a non-breaking leading-depression N-wave, 

R = 3.3£>| Q(L,7)Rsoi. (6.6) 

Here Rsoi is the runup of a Boussinesq solitary wave of the same 7i, and (6.6) is 
asymptotically close to runup law for solitary waves given by Synolakis (1987). 
This is reassuring; as figure 2(a) shows in the asymptotic limit LEN profiles 
describe solitary waves, for example when L = 30, £g = 0.032,(5 !==> 10 and 
Po = 1. 

This relationship (6.6) referred to as the N-wave runup law is valid when 
47cot/3 » 1 for non-breaking LDN waves. The limiting wave amplitude for 
the validity of the above runup law can be obtained from the non-linear shallow 
water theory using Carrier and Greenspan hodographic transformation (Carrier, 
1958) and is the same amplitude as outlined in Tadepalli and Synolakis (1994a) 
for p0 = 1. Q(L,^f) has to be determined numerically, but to the same order of 
approximation as (6.6) and over a wide range, Q varies linearly with L. 

As examples, figures 4(a) and 4(b) show the variation of maximum runup 
with L and 7i respectively. Clearly in the region of physical interest the runup 
increases almost linearly with Tt. 

Figure 5 shows the maximum runup variation with the crest-to-trough 
heights ratio; this parameter is uniquely determined from (2.1) through H, L 
and po. Notice that the maximum runup decreases from the isosceles N-wave 
limit to the solitary wave limit as the crest-to-trough ratio increases, consis- 
tent with the earlier observation that LDNs and LENs climb further than the 
equivalent solitary waves of the same 7i and steepness. 

VII.   DISCUSSION 

We have presented a model for the leading wave of tsunamis, encompassing 
as special cases waves similar to the Boussinesq solitary wave profiles, N-waves, 
and the certain combinations of Gaussian profiles (Carrier, 1993). The func- 
tion can be fully described by specifying the crest amplitude 7i, the steepness 
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parameter p0 and L, and it includes the individual classes of N-waves outlined 
earlier by Tadepalli and Synolakis (1994a). 

Our conjecture is that tsunamigenic faulting generates multi-lobe waves, 
and that the leading wave of the tsunami is important for estimating coastal 
effects, at least along open coastlines. Most physically realistic tsunamis retain 
their overall N-wave character even after transoceanic propagation. Nearshore- 
generated tsunamis do not have sufficient propagation distance to fully evolve, 
and their nearshore manifestation is almost invariably N-wave like. We found 
that the maximum runup decreases as the ratio of trough height-to-crest height 
decreases, confirming that the dip angle is an important parameter for tsunami 
characterization, as suggested by Yamashita and Shato (1974) and Geist and 
Yashioka (1996). 

The two-dimensional character of the generation region limits the appli- 
cation of our proposed model, even though the canonical model itself is two- 
dimensional. We do note, however, that two-dimensional SW propagation mod- 
els are still used extensively by oceanographers for calculating wave evolution 
and runup of wind-generated swell (Raubenheimer et al 1995, Raubenheimer 
and Guza, 1996), a wave motion presumably much shorter than tsunamis. 

Nonetheless, we are reluctant to draw excessive physical conclusions other 
than claim that our initial profile provides a conceptual framework for anal- 
ysis and for explaining certain field observations qualitatively, or even certain 
local numerical calculations as demonstrated by Geist and Yashioka (1996). 
Yet, we did perform simple calculations using our model in one of the recent 
tsunami catastrophes, where the coastal topography allowed it. One segment 
of the pacific coastline of Nicaragua is a 73km long with almost uniform plane 
beach slope (cot/3 = 33.18), fronted by a continental shelf. This simplicity has 
allowed the use of two-dimensional numerical shoreline models coupled with 
three-dimensional offshore propagation models to calculate the runup and inun- 
dation. Figure 6 shows a comparison between the numerically generated surface 
profile for the Nicaraguan tsunami with that of equation (2.1), at the time when 
the wave reaches the toe of the beach (Titov and Synolakis, 1993, Satake, 1995). 
The measured and numerically computed maximum runup values were 6m±2m, 
while the runup law (6.6) predicts 3.5m. 

We envision our model being applied for first-order estimates of tsunami or 
tidal wave inundation, as the realistic alternative to the solitary wave model. 
Given an approximate seafloor deformation area and an average seafloor dis- 
placement and the known dip angle of a fault, the parameters £g^,7i can be 
estimated, and our N-wave model can provide an initial condition for numerical 
computations. It can also provide an estimate of the runup through the runup 
law (6.6), when the coastline is fronted by a fairly uniform beach. The runup 
of a real tsunami may vary substantially in the longshore direction due to lo- 
cal topographic features, yet the model will provide respresentative values for 
preliminary design purposes. 
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Figure 1   Bottom displacement (3.2) that describes leading depression N- 
wave (2.1) for Xi = 262.5 and 7 = 0.014. 
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Figure 2(a) Comparison of Boussinesq solitary profile (-•-), N-wave soli- 
tary profile (-) (L=30, Sg =0.032), Gaussian profile (- -) and leading elevation 
isosceles N-wave (••) 

Figure 2(b) A family of leading-depression waves generated by N-wave (-) 
for L — 8,4,2, l;po — 1, combination of Gaussian profiles (- -) and leading- 
depression isosceles N-wave (••) generated with L = 0,po = 1- 
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Figure 3(a) LDN N-wave generated by equation (2.1) for {X\ = 190, X2 = 
200,7i = l.E - 03) propagated by KDV to 2000 depths. 

Figure 3(b) LDN N-wave generated by equation (2.1) for {X\ = 98, X2 — 
100, H = l.E - 02) propagated by KDV to 4000 depths. 
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Figure 6   Comparison of Nicaraguan tsunami profile at the toe of the 
beach using N-wave [equation (2.1)] with L = 9, Eg = 0.4823 and 7S = 0.015. 
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