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A Fourth Order Boussinesq-Type Wave Model 

Mauncio F. Gobbi * and James T. Kirby 2 

Abstract 

A fully nonlinear Boussinesq-type model with dispersion accurate to 0((kh)4) is 
derived. As an extension to the second order extended model proposed by Nwogu 
(1993), a new dependent variable is defined as a weighted average between the ve- 
locity potential at two distinct water depths to force the model to have a (4,4) Pade 
approximation of the exact dispersion relationship. The present model is similar to 
the fully nonlinear extension of Nwogu's model proposed by Wei et al (1995), except 
that the dependent variable is expanded in a fourth (rather than second) order poly- 
nomial in the vertical coordinate. 

Introduction 

Important progress has been made in variable-depth Boussinesq-type models since 
the development of the more-or-less standard model of Peregrine (1967). Madsen et 
al (1991) introduced higher order dispersive terms into the governing equations to 
improve linear dispersion properties. By redefining the dependent variable, Nwogu 
(1993) achieved the same improvement without the need to add such terms to the 
equations. Wei et al (1995, referred to as WKGS) used the approach of Nwogu to 
derive a Boussinesq-type model which retains full nonlinearity. Numerical compu- 
tations show that the WKGS model agrees well with solutions of the full potential 
problem over the range of relevent water depths, except for some discrepancies in 
the vertical profile of horizontal velocity in nearly-breaking waves. These inaccuracies 
in the prediction of vertical profiles in existing Boussinesq-type models are due to 
the fact that they assume the velocity profiles to be second order polynomials in the 
vertical coordinate z. In this paper, we derive a fourth order Boussinesq model in 
which the velocity potential is approximated by a fourth order polynomial in z. A 
new dependent variable is defined to be the weighted average of the velocity potential 
at 2 different elevations in the water column, and the weight and positions are chosen 
to give a (4,4) Pade approximant of the exact linear dispersion relationship. 
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Derivation of New Model 

The full boundary value problem for potential flow is given in terms of nondimen- 
sional variables by 

4>zz + M2V2</> -   0 

=   0 

v + k+
s. wv U>*Y 

-h < z < Sij 

• = -h 

rjt + 6V<j> • V?? - 

=    0 

=    0; 

z — Srj 

z = 5rj 

(1) 

(2) 

(3) 

(4) 

Here, x and y are the horizontal coordinates scaled by a representative wave number 
fco = 2n/Lo, z is the vertical coordinate starting at the still water level and point- 
ing upwards and h is the water depth, both scaled by a typical depth ho. 77 is the 
water surface displacement and scaled by a representative amplitude a. Two dimen- 
sionless parameters are apparent; 5 = a/ho and /u2 = (k0ho)2. Time t is scaled by 
{ko(gho)1^2)^1, and <j>, the velocity potential, is scaled by &ho{gho)rl2. We integrate 
(1) over the water column and use (2) and (4) to obtain a mass conservation equation 

m + V • M = 0;      M = f " V4>dz. (5) 
J-h 

For simplicity, we assume a constant depth h0; the variable depth model can be 
derived in straightforward manner and is presented in Gobbi et al (1996). We assume 
a fourth order polynomial approximation for <f> and choose the coefficients to satisfy 
the bottom boundary condition (2) and Laplace's equation (1), retaining terms up 
0(/J,

4
). The approximate potential is given by (Mei, 1989) 

M2(l + *) -V% + ^{1 + zY V2VVo + 0(//) (6) 2 24 

where 4>o is the velocity potential at the bottom. Commensurate with the extension 
of the velocity potential to 0(/U4), we seek to derive a set of model equations having 
a corresponding dispersion relation in the form of a (4,4) Pade approximant, given by 

tanh/i_ 1 + (l/9)^2 + (l/945)/i4  , „,--6, 

A     ~   l + (4/9)^ + (l/63)/i* +U(fl) (l) 

For the case of approximations retaining terms to 0(/i2), the goal of obtaining the 
corresponding (2,2) Pade approximant is achieved by redefining the velocity potential 
in terms of the value of the potential at an elevation za = h[(l + 2a)1'2 — 1]; a = —2/5 
and using the resulting reference value <f>a as the dependent variable; see Nwogu (1993), 
Chen and Liu (1995) and Kirby (1996). This procedure is not adequate in the present 
context. Instead, we define a new dependent variable 

4> = Ha + (1 - (i)h 

where <f>a and </>& are the velocity potentials at elevations z — za and z — 
a weight parameter. <j> may be written in terms of 4>o using (6) to obtain 

^BV\ )0 + ^_DV
2V^o + 0(//) 

(8) 

Zb, and j3 is 

(9) 
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where 

B   =   f3(l + za)
2 + (l-l3)(l + zb)

2 

D   =   /3(l + *0)
4+(l-/J)(l + *b)4 (10) 

Inverting (9) gives a formula for 4>Q in terms of <j> which is substituted into (6) to get 
an approximation to the full velocity potential in terms of <j>: 

• = $  +   ^-{s-(i + ,)2}v2 

+    Z-iB>-B(l + zy-^ + D ,  (1 + z) 
6 

-jv2v2 
W+<W     (ii) 

Defining the total depth H = 1 + 6r/, and substituting (11) into (5) gives a mass flux 
conservation equation for <j> and rj: 

+ 

Next we substitute (11) into (3) to obtain an approximate Bernoulli equation, given 
by 

V + f>t+£{B-H>}v% + £![B>-BH*-^+I£} 

+  5 [(V0)2 + M2 {B - H2} v* • v(v2^) + fu2 (v2^)5 

+ B2 - BH2 - — + ^}v^v(v2v2^) 

+    V-{B2-2BH2 + H4}{V(V24>)}2 

+    n4{BH 
H4 

(V2</>)(V2V 2T72; = 0(A (13) 

If we neglect p.A terms from (12) and (13) and set ji = 1, we recover the WKGS model 
with Nwogu's a being related to B by 

B = 2a + 1 (14) 

If, in addition, we neglect products Sfi2 or higher, we recover Nwogu's model in the 
velocity potential form given by Chen and Liu (1995). 
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Linear Dispersion Properties 

Neglecting all terms containing 8 in (12) and (13), we obtain the following linear 
equations for mass flux conservation, 

+   £ (B2----+-) V2V2V20 = 0 (15) 

and an approximate Bernoulli equation, 

r,   +   <k + ^(5-l)V2^ 

+   ^B2-5-| + J)v2V2^ = 0 (16) 

To analyse the dispersion properties of these equations, we assume the following gen- 
eral solution to the equations: 

•q = ae*'(x-"">     4> = fte^*""*) (17) 

where u in the angular frequency nondimensionalized by ko(gho)1'2, a and 6 are 
amplitudes, and i — \f^l. Substituting (17) into (15) and (16) we obtain the linear 
dispersion relationship for the model: 

2  1-K*-£)"a + KJ?a-f-e + »)"4 
W4 = i '- } r-i  (18) 

l-I(S_l)^ + l(B2-B-fi + i)^ 

The expression (18) is the (4,4) Pade approximant to the exact linear dispersion 
relationship to2 = tanh/i//i if we set B = 1/9 and D = 5/189. The parameters /?, 
za, and Zb are chosen in order to obtain these values. Since we have 3 unknowns and 
2 equations, there are an infinite number of solutions that give the desired values of 
B and D. However, an arbitrary choice of /3 can give imaginary values of za or z\, 
or values lying outside of the fluid domain, making these parameters lack physical 
significance. It can easily be shown that values of /? between 0.018 and 0.467 will 
give both za and z\, to be real values lying inside the water column. In the present 
paper we arbitrarily choose /5 = 0.2, and solve for za and Zb to give us the (4,4) Pade 
approximant to the exact linear dispersion relationship. 

Figure (1) shows the ratio of modelled phase speed with Airy's exact linear solution 
for the standard Boussinesq theory based on depth-averaged velocity, the (2,2) Pade 
approximant formulation (referred to as Nwogu's formulation for simplicity), and the 
(4,4) Pade approximant dispersion relationship (referred to as the present formula- 
tion) . It is clear that the present model has improved linear dispersion properties over 
Nwogu's already accurate Nwogu's model, and closely reproduces the exact solution 
through intermediate to deep water. Similarly, the linear group velocity, defined as 
Cg = duj/dk is shown in figure (2) and the improvement in the present model over 
Nwogu's model is even more evident. 
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Figure 1: Ratio of model phase speed and Airy's exact linear solution. Standard 
Boussinesq (dash-dotted), Nwogu's (2,2) Pade approximant(dotted), Present (4,4) 
Pade approximant(dashed). 

Nwogu (1993) found that the range and accuracy of the (2,2) Pade formulation 
could be extended by adjusting the model coefficients using an error minimization 
procedure. In the present case, the authors found that the error surface in the neigh- 
borhood of the (4,4) Pade approximant is sufficiently flat so that further adjustment 
of the model parameters is unwarrented. 

Internal Kinematics 

The internal kinematics of the present model can be obtained from (11). We define 
a function fi(z) as the the velocity potential normalized by its value at position z = 0: 

AW = 
i-g[a-(i + ^] + g[B»-B(i + g)2-a + ii#l] 

f [B-i] + £ [fi2 - B - D + l 
ft      t     ft 

(19) 

The vertical velocity component w can be obtained by differentiating (11) with 
respect to z. Similarly to /i, a vertical velocity profile function can be obtained by 
defining /2(z) = w(z)/w(0): 

h{z) = 
^[(l + z)] + ^-[-B(l + z) + ^-] 

(20) 

The corresponding fa from the exact linear theory is sinh[/t(l + z)]/sinh[/i]. 
Figure (3) shows comparisons of fi(z) between the exact linear solution cosh[/u(l + 

z)]/ cos,h\p], Nwogu's model and the present model, for various values of fj,. For 
moderately shallow water, the two models reproduce the exact solution quite well. 
As fi increases, Nwogu's model starts to deviate strongly, while the present model 
remains very accurate until quite deep water. 
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Figure 2:   Ratio of model group velocity and Airy's exact linear solution, 
(dotted), Present (dashed) 

Nwogu 

Figure (4) shows plots similar to figure (3) for /2- Notice that Nwogu's model has a 
linear vertical profile for w, a poor representation in intermediate to deep water. The 
present model stays close to the exact solution for a wide range of \L. Finally, figure 
(5) shows the ratio to the exact linear solution tanh(/i) of the ratio between vertical 
and horizontal velocities w/u at z = 0, h{ii), for the present model and Nwogu's 
model. The approximate expression for fa is: 

/3(M) = 
w(z = 0) M + -B + *] 
U(* = 0) 1_^[B_1]+^[52_5_D + I] 

(21) 

The present model agrees better with the exact linear solution than Nwogu's model 
for a wide depth range. 

Second Order Nonlinear Interactions 

In the previous sections we have seen that the proposed model has excellent linear 
dispersion properties as well as a greatly improved representation of the internal flow 
kinematics. It is useful to analyse some of the nonlinear properties of the model by 
using analytical tools such as Stokes' type asymptotic expansions and multiple scales 
expansions. Since these types of analysis have been extensively applied and studied 
for the full boundary value potential problem, we can obtain an idea of how well the 
nonlinear version of the present model would perform by comparing some of its non- 
linear properties with those of the full problem, and also with WKGS and Nwogu's 
model, keeping in mind that a numerical implementation of WKGS model has already 
been tested and compared to data with success. We will now look at the generation of 
super- and subharmonics by second order Stokes-type interactions. It is well known 
that in intermediate and deep water the first nonlinear correction of a linear wave 
solution is a set of bound waves called the superharmonics (resulting from sum-wave 
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Figure 3: Normalized verical profile of linear horizontal kinematics for (a) n — 1, (b) 
At = 3, (c) At = 5, (d) A« = 8. Exact (solid), Nwogu (dotted), Present (dash) 
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Figure 4: Normalized verical profile of linear verical velocity for (a) fi = 1, (b) /j, = 3, 
(c) fi = 5, (d) fi = 8. Exact (solid), Nwogu (dotted), Present (dash) 
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Figure 5: Ratio of approximate results for W(0)/M(0) to the exact linear solution. 
Nwogu and WKGS (dotted), Present solution (dash). 

interactions) and corresponding subharmonics (resulting from difference-wave inter- 
actions) (Hasselmann, 1962). These bound waves are proportional to products of 
the amplitudes of solutions to the linear equations. The constants of proportionality 
(which are functions of the local depth) will be referred to as transfer coefficients. 
Nwogu (1993) has investigated the generation of these bound waves in his extended 
Boussinesq model and found qualitatively reasonable agreement with Stokes' theory. 
Madsen and S0rensen (1993) have found similar results. Kirby and Wei (1994) ex- 
tended Nwogu's model to full nonlinearity and found that the retention of terms 
proportional to Sfj,2 (which are neglected in Nwogu's model and the standard Boussi- 
nesq model by assumption) is essential for a prediction of the transfer coefficients to 
the level of accuracy implied by the order of retained dispersive terms in the original 
model equations. Here, we derive the transfer coefficients for the present model and 
compare to results from previous models. 

We investigate nonlinear properties of the present model by introducing the per- 
turbation expansion: 

V = Vo + h\ + s2V2 
(22) 

into (12) and (13), and order the equations in powers of S. At each order 0(5n) we 
obtain: 

rj„t + Li<j>n   =   Fn 

Vn + L2<l>nt     =     Gn (23) 
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where L\ and L2 are the linear operators: 

Ll   =   V2 + ^(s-i)v2V2 

+  T{
B2
-I-J 

+
 U)^

2 <*) 
1 + ^(B-1)V2 

^4 
4

r (S
2 - B - I + 1) V2V2 (25) 

and the forcing terms for the first 2 orders are given by: 

F0    =    0 

Go   =   0 
2 

Fi    = -V.fo,V6,)-^-(S-l)V-{%v(v%)} 

- £(B»-fl_! + i)v.{,*v(vaV%)} (26) 

Gi    = -i(V^o)2 + y{2??oV2^-(S-l)V^o-V(vVo) + (vVo)2} 

- £ { (| - 2B) ^OV
2

 W + (#2 - 2? - I + i) V«^o • V (v2V2
??o) 

+    ±(B - 1)2V (V20o) • V (V2^0) + 2 (B - i) (V2^0) (v
2V%) }    (27) 

We assume the following random linear sea as the solution to the 0(1) problem: 

Vo = ]C a" cos ^" >      ^° = S bn sin ^"' (28) 
ra n 

where a„ and 6n are nondimensional amplitudes of the functions 770 and <f>0, ipn = 
kn • x — wnt — 6n, kn is the ra-component wavenumber vector nondimensionalized by 
ko, x is the horizontal coordinates vector nondimensionalized by 1/fco, wn is the n- 
component angular frequency nondimensionalized by ko(gho)1'2. Substitution of (28) 
into the 0(1) set of equations (23) with n = 0 gives a set of n relationships between ojn 

and kn = |kn|; each of them is the same as (18). We also find a relationship between 
a„ and bn given by: 

*» = a~ *• = *• i1 - & (B- 5)+ T« (*! -1 - j + »)} (») 
Following the standard perturbation technique, we substitute the 0(1) solution (28) 
into the right-hand-side of the 0(S) equations (23) to find the forcing of the 0(6) 
problem. The forcings F and G in the mass and dynamic equations (23) respectively 
are: 

F     =      4Z)Sa'»a'{:Fmisill(V'i + V'm)+^m,sin(^-'0m)} 
I      m 

G     =     l5ZZla'"0'{e'm;COS(^ + V'm)+£'~(COs(V)/- Vra)} (30) 
4' , 



BOUSSINESQ-TYPE WAVE MODEL 1125 

where 

~±    _ umk? ± uik2
m + (u>i ± um)(ki • km) 

Tml    ~ ^ (31) 

+ cofkfkmKm + -(B - l)oJiojm(kf + fc£,)(k, • km) ±uiumtfkl\ 

+ fj,4 {-±(B - ^j (ufkfkmKm + uj2mk
4

mk,K,) 

-    \ (B2
 - B - j + J) (k, • k„>,u,m (kf + k4

m] 

i(B - l)2U,,Wm^(k; • km) T ^ (B - j) u;miJtk
2

mkf(k2
m + &(

2)} (32) 

Equation (31) is identical to the full Stokes' theory result, except for the approxi- 
mate dispersion relationship. Equation (32) can be rearranged within the level of 
approximation of the present model to: 

g± = -k, • km + p? {u,um(uf + up ± U>?OJU  { Q , 6. -33. 
m W(o;m 

which is, again, formally the same as the full Stokes' theory result but with an ap- 
proximate dispersion relationship. 

The forced solution for r/i can be obtained by solving (23) and is given by 

^2 J2 ama> \H-ml C0S(V7 + i>m) + #"; COs(V>J ~ VVi)} (34) 
I     m 

where 

ml ml 

t.r^   T±   — b^ CA T* 
nj±    _ wml-rml       ^ml^ml1 ml 

"" 4(u,±()2-fe±,T±     ' 

1 - 4 (* - l) & + £ {B2 -f-f + gb)  (*, 

(35) 

±^4 
_,-j-   _ , ±   ~ 2   \~       3/ '-'ml/ 4   ^.— 3 e    '   30/ \   mil 

1 - £(B - l)(fc±,)2 + ^ (S2 - S - f + |) (*£, ±.14 

ml |k, ±km|,     «*, =wj±w„ 

^m/1 ^m; are respectively the super- and subharmonic transfer coefficients of the in- 
teraction between the (/, m) pair of waves. Figures (6) and (7) show comparisons of 
the ratio of approximate Hmi to Stokes' solution, for Nwogu's model, WKGS model, 
and the present model. Note that the poor representation of these coefficients at small 
ji in Nwogu's model is due to the assumption of weak nonlinearity, as discussed by 
Kirby and Wei (1994). The present model predicts superharmonic amplitudes very 
accurately over a wide range of water depths. The asymptotic representation of sub- 
harmonic amplitudes is also more accurate than in previous models. However, the new 
solution deviates more rapidly from the exact solution than do the previous results. 
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Third Order Nonlinear Interactions 

We now extend our analysis to third order interactions. We will focus on obtaining 
the amplitude dispersion of a simple unidirectional monochromatic wave train. It is 
well known that at this order, it is necessary to introduce a "slow" time scale into 
the problem, since resonant interactions take place and the perturbation problem 
becomes singular. We will concentrate on plane waves traveling in the x direction. 
The "stretched" time scale is given by: 

t   =   t' + 5t' + S2t' = t' + Ti+T2 (36) 

We then substitute (36) and (22) into (12) and (13), and order the equations up to 
0(<52). We assume the solution to each order to be of the form 

r?n=      £      tJBm(Ti,T2)e
ira<*'-rt'> 

m=-(n+l) 

4>n=    £    ^(ri.r^-^' (37) 
m=—(ra+1) 

We then seek an equation for the 0(1) wave amplitude, in T\ by relating the coefficients 
(amplitudes) in (37) of each order to the ones of the previous order. After some 
algebra, the following equation for the wave amplitude A = 7701 is found after we 
neglect current components (terms involving 4>\Q): 

AT2 + iff! \A\2 A = 0 (38) 

where, for the present model: 

ax   =   ^^-f4+16CiM2-w-2(l + 4C,3M2 + 16C4/i
4)l 

UQ1Q2 L v /J 

-    7£r{E20 + E22)U + CitJ3-u-2ii-1Qi) 

+ 
n 

P22 
[l + (2 + 5C3) M2 + (lOCi + 17C4 + 4C|) /14] 

Ati2oj3QlQ2 

3   [i + c3/i
2-ar2(i + cV)] 

and 

I6Q1 

+   -Lf4+(8C,3 + 1/6)|U2] (39) 

C!   =   -I(B-i),     C2=l(,
2-f-f + l) 

-i(B-l);      C4=i(fl'-B-f + i) (40) C3   = 

and where E20, E22, P22, Qi and Q2 are complicated functions of/x which may be found 
in Gobbi et al (1996). The corresponding <7i for the full boundary value problem is 
given by: 

cosh 4/i + 8 - 2 tanh2 fi .    . 

16 smh fi 
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Equation (38) can be integrated to give: 

A = a0e-i{Sia°T*) (42) 

where ao = \A\. The leading order solution of r\ is, then: 

771 = ao cos(fca; — ojit) (43) 

where 
wi=w+(5/i)2o-ioS (44) 

The coefficient a\ characterizes the amplitude dispersion occurring at leading order 
due to third order wave-wave interactions. Figure (8) shows comparison of the ratio 
o\ from the present model and from WKGS model to the Stokes' solution to the full 
problem. The present model appears to have a better asymptotic approximation to 
the full problem, with excellent agreement in shallower water and acceptable agree- 
ment in intermediate to deep water. 

Conclusions 

A Boussinesq-type model with 0(1) nonlinearity and 0(fi4) dispersion has been 
proposed. By defining one the dependent variables as the weighted average of the 
velocity potential at two distinct water depths, it is possible to achieve an extremely 
accurate (4,4) Pade approximant for the linear dispersion relationship. A major im- 
provement over the existing second order models has been found in the prediction 
of the internal flow kinematics. A perturbation approach was carried out to anal- 
yse random wave second order nonlinear interactions and it has been shown that the 
present model predicts the transfer coefficients of super and subharmonics generation 
very well over a wide range of water depths. Finally, the present model predicts well 
the amplitude dispersion due to third order nonlinear wave-wave interactions. The 
authors are now preparing a more thorough paper, and are working on the direct 
solution, of the proposed equations by numerical techniques. 
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Figure 6: Ratio of approximate superharmonic transfer coefficients to Stokes' solution. 
Stokes' theory (solid), Nwogu (dotted), WKGS (dash-dot), Present (dash), Present 
rearranged (thin dot) 
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Figure 7: Ratio of approximate subharmonic transfer coefficients to Stokes' solution. 
Stokes' theory (solid), Nwogu (dotted), WKGS (dash-dot), Present (dash), Present 
rearranged (thin dot) 

Figure 8: Ratio of Schrodinger equation's cubic term coefficient to full problem's 
Stokes solution. Wave-wave interaction contribution. Full boundary value problem 
(solid), WKGS (dotted), Present (dash) 


