
CHAPTER 82 

Nonlinear Refraction-Diffraction of Surface Waves 
over Arbitrary Depths 

Serdar Beji1 and Kazuo Nadaoka2 

Abstract 

A nonlinear dispersive wave model recently introduced by the authors is 
used for sample simulations of directional wave transformations over gently 
varying depths. Various forms of the generic equation are presented first, and 
the dispersion and nonlinear characteristics of the model are investigated ana- 
lytically. Following the numerical descriptions, the experimental data for linear 
wave propagation over a circular shoal and for nonlinear wave propagation over 
a topographical lens are compared to the model predictions with satisfactory 
agreements. Finally, as a demonstration of the unified character of the model, 
the unidirectional version of the wave equation is implemented for simulating 
the gradual transformation of an initially second-order Stokes wave train over 
decreasing depth into a cnoidal wave train. 

Introduction 

The mean wave-number of a wave field propagating from deep to shal- 
low water changes gradually and, when subject to spatial non-uniformities and 
non-linearity, causes quite profound modifications in the overall wave pattern. 
For an accurate description of such phenomena it is essential that a good wave 
model accommodates the relevant physical mechanisms. One such a model is 
Berkhoff's (1972) mild-slope equation, which has been used successfully in the 
last two and half decades. The model however has a few shortcomings, no- 
tably its restriction to linear, monochromatic waves. The time-dependent form 
of this equation (Smith and Sprinks, 1975) performs better in representing a 
narrow-banded wave field but cannot account for nonlinear effects which are 
quite appreciable for waves propagating on shallow waters or over sand-bars 
(Freilich and Guza 1984, Byrne 1969, Young 1989). In the nearshore zone 
the Boussinesq-type models are probably the best choice; however, their weak 
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dispersion characteristics imposes limits on the applicable range of these equa- 
tions. Despite the successful reports of extending their validity range (Witting 
1984, Madsen et al. 1991, Nwogu 1993, Beji and Nadaoka, 1996), due to the 
certain assumptions introduced in their derivation, they remain finite-depth 
equations. The existing wave models then provide only partial representations 
of the observed effects: the mild-slope type equations are usable only for linear, 
narrow-banded waves while the Boussinesq equations are restricted by their 
applicable depth. 

In order to overcome the drawbacks of the available wave models; namely, 
the linearity, narrow-bandedness, and depth-limitation, Nadaoka et al. (1994, 
1997) advanced a new approach which was termed as the multiterm-coupling 
technique. They expressed the velocity field as a sum, each term comprising 
a hyperbolic vertical-dependence function and a corresponding velocity vector 
independent of depth. This expression was then used in nonlinear forms of the 
depth-integrated continuity and momentum equations in conjunction with the 
Galerkin procedure which ensured the solvability. The result was a set of wave 
equations that could describe the evolutions of a broad-banded nonlinear wave 
field propagating over arbitrary depths. These general equations have been 
shown to produce the aforementioned well-known wave models as degenerate 
cases besides generating the second-order Stokes waves on deep water. Here, the 
single-component (i.e., a single-term expansion of the velocity field) equations 
in combined form as given by Beji and Nadaoka (1997) is used. 

Wave Model and Its Various Forms 

Nadaoka et al. (1997) give the following continuity and momentum equa- 
tions as the single-component wave model, correct to the second-order in non- 
linearity: 

??t + V + T)      U = 0, (1) 

CpCgUt+ClV 

k* 

gn + nwt + - (u • u + w2) 

V(V-ut) + V 
Cp(Cp   —   Cg) 

fc2 

(2) 
(V-ut), 

where r\ is the free surface displacement, u(u, v) the two-dimensional horizontal 
velocity vector and w the vertical component of the velocity both at the still 
water level z = 0. Cv, Cg, and k are respectively the phase and group velocities, 
and wave-number computed according to linear theory for a prescribed incident 
frequency LJ and a local depth h. g is the gravitational acceleration, V stands for 
the horizontal gradient operator with components (d/dx,d/dy), and subscript 
t indicates partial differentiation with respect to time. Note that (1) and (2) are 
formulated for varying depth and therefore Cp, Cg, and k are in general spatially 
varying quantities. The above single-component equations may be considered as 
evolution equations that can simulate weakly-nonlinear, narrow-banded wave 
transformations over arbitrary depths. Compared with the Boussinesq-type 
equations, these equations are superior in the sense that they may be used 
without any restriction on the depth. 
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Eliminating u from (1) and (2) to obtain a wave equation for the surface 
displacement n results in (Beji and Nadaoka, 1997): 

Cgr,u - C%V2
V - {Cp~2

C9)V2
m - CpV(CpCg) • Vr, 

2/^4 \ (3) 

>-*%—?)*<*') = '>• 
Equation (3), named as the time-dependent nonlinear mild-slope equation, is 
the wave model adopted in this work. For a prescribed wave frequency and a 
definite water depth the wave number and the phase and group celerities are 
determined according to the relations given by linear theory. 

Instead of eliminating the velocity field, invoking the existence of a two- 
dimensional potential function at the still water level z — 0 such that u = V</i 
and eliminating the surface elevation from (1) and (2), one obtains 

Cg4>u - C;V'4> - {Cp
u2

Cg)V2<l>tt - CpV(CpCg) • V0 

k2cf 
92    , 

'(v^)2]t = o, 
(4) 

where the obvious approximation (V0)2 ~ —k2<f>2 in the nonlinear term is in- 
tentionally avoided since <f> itself is not a directly measurable physical quantity 
and cannot be specified uniquely in the computations. Note also that for in- 
finitely deep water waves C2 = g /k hence the coefficient of the nonlinear term 
in (4) vanishes, indicating a linear velocity potential for the second-order waves 
as in the Stokes second-order theory. The surface displacement on the other 
hand remains nonlinear regardless of the relative depth. 

The linearized fDrm of (3) or (4) is comparable with the time-dependent 
mild-slope equation of Smith and Sprinks (1975) but equation (3) can simulate 
a relatively broader wave spectrum as shown by Beji and Nadaoka (1997). 

It is possible to extract from (3) a wave equation describing only the one- 
dimensional, right-going waves (Beji and Nadaoka, 1997): 

Cgm + \cv{Cv + Cg)r,x-
iC>-2

Ca)r,xxt - ^^^ XXX 

1,.,.,    .,.       „ ,       3    /„     „Gp      k2C4 

7P 

+§ [CP(Cg)x + (Cp - Cg)(Cp)x}V + "-g I 3 - 2^ p- ' <-2 

which may be shown to include the KdV equation as a special case as well as 
admitting the second-order Stokes waves as solution in deep water. 

The counterpart of (5) in terms of the one-dimensional potential is 

x         ,                       .                 ( Op — O Q )                     (—'ip I Oin — O Q \ 
Cg</>t + n^-'pV-'p + C g)<t>x Trj 4>xxt TTT) 4>xxx 

1                                                                 3        /        k2C4\ (6) 
+ g 1

C
P(

C
9)X + (cP - Cg)(Cp)x] <j> + -Cp I 1 ^ I (<f>x)2 = 0. 
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It should be remarked that the linear dispersion characteristics of (5) and (6) 
are better than those of (3) and (4). More specifically, (5) and (6) can simulate 
waves with broader spectral width than the generic equations (3) and (4). The 
details on the subject will be reported separately. 

Solitary and Stokes Second-Order Waves 

It has already been indicated that the wave model provides a unified ap- 
proach in describing the nonlinear waves at arbitrary water depths. Simple 
analytical investigations are now presented to clarify the nonlinear character- 
istics of the model regarding the solitary and Stokes second-order waves. We 
begin with the solitary waves. 

Let us seek a solution of the form r) = H cosh- [(x ± Cat)/la], where H 
is the prescribed wave height, la and Ca are respectively the length scale and 
the phase speed of the solitary wave which are yet unknown quantities to be 
determined from the wave equation (3). The form adopted is the lowest-order 
solution, the general expression is an infinite sum of hyperbolic cosine functions 
of higher powers (see Fenton, 1972); for the present purposes however it will 
suffice. Substituting this expression in (3) and solving for la and Ca give 

6(Cp - Cg) (C
2 + \PH) 

(3k2CgH 

1/2 

C„ 
cl +l?H 

-,1/2 

(7) 

where 0 = |<H 3 — 2-^f- ^- I is the coefficient of the nonlinear term in (3) 'cr g' 
divided by Cp. A matter of historic interest is obvious from the form of la It be- 
comes zero for Cp = Cg; that is, nonlinear-nondispersive waves cannot maintain 
a permanent form simply because there exists no dispersivity to counterbalance 
the steepening action of nonlinearity. However, allowing the lowest-order dis- 
persion by letting Cp ~ {ghf>2{\ - k2h2/6) and Cg ~ (gh)l'2{\ - k2h2/2), 
as in the Boussinesq theory, is sufficient to obtain a permanent form. If these 
approximate forms are used in (7) and the higher-order dispersion contributions 
are dropped, 

la* 
4h3{l + H/h) 

3H 

1/2 

Ca^\g{h + H)\L'\ (8) 

which are in complete agreement with the classical expressions (Miles, 1980). 
la is the same as Rayleigh's (1876) result and for small H/h it may be replaced 
with (4/i3/3//)1'2, which is the well-known expression. 

Assuming that the wave equation (3) admits the second-order Stokes waves 
as solution we let T] = acos(fcsa; ± uit) + bcos2(kax ± u>t) and substitute this 
expression into (3) to determine the unknown wave number ka and the second- 
harmonic amplitude 6. The primary wave amplitude a and the frequency w are 
taken to be known. Equating the zeroth- and first-order terms to zero gives 

fc2, b = 
pa2 

bCp\Cp — Cg) (9) 
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where the interaction of the primary wave with the second-harmonic is excluded 
in the above analysis to be consistent with the perturbation approach of Stokes. 
Note, for deep water waves Cp = (g/k)1/2, Cg = Cp/2, and ft — \g hence 
b — jfca i which is the same as the second-order Stokes theory predicts. 

Equation (3) is an evolution equation and therefore, unlike a sharply trun- 
cated perturbation solution, produces higher-order nonlinear dispersion effects 
which are partially correct. If the term produced through the interaction of the 
primary wave with the second-harmonic is retained, ks becomes 

'•^('^P (,0) 
where b is as given in (9). For infinitely deep water waves equation (10) may be 
approximately written as ks ~ (1 — |fc2a2)fc, which is slightly at variance with 
the Stokes' third-order result ks ~ (1 — k2a2)k (approximated for small ka). 
We may then conclude that the partially correct third-order nonlinear effects 
produced by essentially second-order wave equation (3) is a good approximation 
to the Stokes third-order theory. This point has been verified through numerical 
simulations as well (Beji and Nadaoka, 1997). 

Numerical Modeling 

Equation (3) is first manipulated into the following form: 

C2(l - n) 
V%t - V{nCz

p) • Vr, 

(11) 

where w is the prescribed dominant wave frequency and n = Cg/Cp. Compared 
with (3) equation (11) is computationally preferable as it requires the storage 
of only n and Cp (or C2) over the computational domain instead of k, Cp, 
Cg. Three-time-level centered finite difference approximations were used for 
the discretization of (11) which resulted in implicit schemes both in x- and 
^-directions. The three-point-averaging formulation of Zabusky and Kruskal 
(1965) was used in evaluating the spatial derivatives of the nonlinear terms, 
as it improved the robustness of the scheme. For computational efficiency an 
iterative approach was adopted and the domain was swept in the x- and y- 
directions separately, treating the crosswise new time level variables known by 
using the last available values. Giving only the time derivatives in discretized 
form, the a;-sweep equation is 

(„*+i - 2„* + „*-!)      Cj{\ - n) (q**1 - 2^x + ^j-1) 
" A*2 w2 At2 

u2 At2 p ^ vy' 

(12) 
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in which the superscript k denotes the time level and fj = (f)k+i ,• + »/*-• + 
Vi-i j)/3 with i and j denoting the spatial nodes in the x and y- directions, 
respectively. The new time level values Vyy1^ appearing on the right-hand side 
of (12) are treated as known by using the last computed values so that r]k+1 and 
JJxx'1'8 appearing on the left-hand side are the only unknowns. The resulting 
matrix equation is tridiagonal and can be solved quite efficiently. 

Similarly, the y-sweep equation is 

(„*+i - 2yk + vk-')      C2(l - n) (C1 ~ Hv + 1&T1) 
n At2 u2 At2 

gp
2(l ~ ") fe+1 - 2V

k
xx + r,*?)        2     „ k 

u2 ^(2 p "   x vv' 

+ (»CJ).,: + (nC2)yV
k + \9 (z - 2n - ^) [(,-*,-*)_ + (5V) J , 

(13) 
in which JJ* = (»?^+1 + nk

%j + Vij-i)/^- Vk+l and Vyy1'8 appearing on the 
left-hand side are the only unknowns. The nk+l's obtained from (12) are only 
the first estimates, which are used on the right-hand side of (13) for improved 
computations. Since the ^-direction is taken as the main wave propagation 
direction, equation (12) is solved once more using the updated new time values 
obtained from (13). In all the computational tests presented later further iter- 
ations brought no improvements so it was concluded that three sweeps (x, y, 
and x again) would be enough for most problems. 

Equation (5) may likewise be manipulated into a computationally efficient 
form 

1                           C2 C3 

nvt + 2
C

P^ 
+ n^x 2^ ~ nfoxxt ~ ^'(1 _ nhxxx 

1 \  n   ( u2C2\ (14) 
+ - \(Cp)x + Cvnx\ r, + - JL I 3 - 2n - —^ j (*,2)x = 0, 

where n and Cp are the only variables to be stored. Equation (14) yields an 
implicit scheme when three-time-level finite difference approximations are used 
for replacing the derivatives: 

2At u2[i     n> 2At 

1-Cp(l+n)V
k-^(l-n)rl

k
xx+

1- -Cp(\ + n)r,kx - -^(1 - n)nk
xxx + - [(Cp)x + Cpnx] nk (15) 

(*V).- 
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Sample Simulations 

The first simulation is linear wave propagation over a circular shoal. This 
experiment was designed and carried out by Ito and Tanimoto (1972) to test 
their numerical wave model. The shoal was constructed as concentric circles 
whose centers were located three wavelengths away from the incoming bound- 
ary. The width of the wave flume was 6L0 — 1A m, where L0 = 0.4 m is the 
incident wavelength. Analytically, the water depth h may be expressed as 

2 h = hc + e0r 

h = h0 

for 

for 

r < R 

r>R 

where 
r2=(a; -xc)2 + (y - J/C)S 

(16) 
he)/R*. 

0.15 m the water depth outside Here,  R  =  2L0 is the shoal radius,  hc 

the shoal, hc = 0.05 m the water depth at the center of the shoal located at 
(xc = 3Z,0, yc = 3L0). Thus, the depth to the wavelength ratio at the incoming 
boundary was h0/L0 = 0.375, which reduced to hc/L0 = 0.125 at the shoal 
center. 

Ito and Tanimoto (1972) performed their experiments for three different 
incident wave height to wavelength ratios H0/L0 = 0.016, 0.026, and 0.035. 
In the computations however, the selected wave height was immaterial because 
the linearized form of (11) was used. The computations were done with Aa: = 
Lo/10, Ay — L0/6, and At = T/10. Higher resolutions were found to be 
unnecessary as the results changed very little. An equally important point is 
the computational time which for this case was no more than a few minutes on a 
personal computer. This computational efficiency applied to nonlinear cases as 
well since the inclusion of nonlinearity amounts to only quasi-linear additions 
appearing on the right-hand sides of equations (12) and (13). A perspective 
view of the fully-developed wave field is depicted in figure 1, after 20 wave 
periods elapsed from the commencement of the computation. 

Figure 1: Perspective view of the fully developed wave field over a circular shoal. 
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In figures 2a, 2b, and 2c, the nondimensional wave height variations along 
the centerline and across the wave tank are compared with the measurements. 
As it is seen, the computational results agree remarkably well with the mea- 
surements. 

li*IM* (B./U'0Af) 
by-IMi (B./U-4.0U) 

y/U = 3 o      1P.DM* OWU-UIG 

0      bf.M»fP./U-M3S) 

i/U = 5 

'  Copuka (UOMO 
fc*D«i <H,/L,>0Ali) 
fcavMaOWU-O-OH) 

l/U=6 

Figures 2a, b, c: Comparisons of the measured and computed wave-height variations 
along the centerline y/L0 = 3, across the wave tank at xjL0=l and at x/L„=6. 

The second case is the computation of wave convergence over a bottom 
topography that acts as a focusing lens (Whalin, 1972). The wave tank used in 
the experiments was 25.6 m long and 6.096 m wide. In the middle portion of 
the tank eleven semicircular steps were evenly spaced to form a topographical 
lens. The equations describing the topography are given in Whalin (1972). 

Three sets of experiments were conducted by generating waves with peri- 
ods T = 1, 2, and 3 seconds and the harmonic amplitudes along the centerline 
of the wave tank were measured at various stations. For all three cases the com- 
putations were performed with a span-wise resolution Ay of 1/10 of the wave 
tank width. Since the bathymetry is symmetric with respect to the center- 
line, only one-half of the tank is discretized. The no-flux boundary conditions 
are used along the centerline and the side-wall. Figure 3a compares the com- 
puted harmonic amplitudes with the measured data for the incident wave period 
T = 1 second and the wave amplitude ay = 1.95 cm. The time-step and the 
a;-direction resolution were At = T/25 and Aa: — Lm/25 with Lm denoting the 
mean wavelength computed as the average of the deep-water and shallow-water 
wavelengths. In figure 3b the case for T = 2 seconds and ao = 0.75 cm is shown, 
the resolutions were At = T/30 and An = Lm/30. Figure 3c gives the compar- 
isons for T = 3 second waves with the deep water wave amplitude ao = 0.68 
cm. Since the harmonic amplitudes were comparable with the primary wave 
amplitude, it was necessary to adopt somewhat higher resolutions and therefore 
A( = T/35 and Aa; -•- LTO/35 for this last case. 
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Figures 3a, b, and c show that the agreements of the computations with 
the measurements are not as good as the previous case; nonetheless the overall 
model predictions appear to be acceptable. For nonlinear directional waves, a 
better numerical approach is expected to yield better results, as the present 
numerical scheme has been observed to be sensitive (unlike the linear case) to 
the adopted resolution when the waves were nonlinear. 

o      Hnl fcamcHfc 

DiiUnc* (m) 

Figures 3a, b, c: Comparisons of the measured (scatter) and computed (solid line) 
harmonic amplitude variations along the centerline of the wave tank for T = 1 s (top 
left), T = 2 s (top right), and T = 3 s (bottom) waves. 

To give an idea about the wave patterns, a perspective view of the fully- 
developed wave field is given in figure 4 for T = 2 second waves. 

Figure 4:  Perspective view of the fully-developed nonlinear wave field over a topo- 
graphical lens (T = 2 s wrves). 
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In order to demonstrate the wide applicable range of the proposed wave 
model we shall now consider the transformation of an initially second-order 
Stokes wave train into a cnoidal wave train over uniformly decreasing depth 
with a constant slope of 1:50. The water depth in the deep section is 20 m and 
after a distance of 900 m it reduces to 2 m. The incident wave is a second-order 
Stokes wave with T = 6 s and kH0 = 0.1. The initial steepness was chosen 
small so that an unacceptably large wave steepness in the shallowest region 
could be prevented. 

The computations were done with At = T/40 and Ax = L/40. Figure 
5a shows the spatial variation of the initially second-order Stokes wave as it 
propagates over the slope. In the deeper region the wave train does not yet feel 
the bottom so it travels without change of form for more than 500 m. Then, 
the finite- depth effect begins to steepen the waves. Finally, when the waves 
reach the shallowest region they are much steeper H/h = 0.55 and resemble to 
the cnoidal waves rather than the Stokes waves, as it can clearly be seen from 
the closer views given in the figures 5b and 5c. Indeed, the computations with 
the Stokes theory yields a very unacceptable wave form for this shallow depth 
as the theory virtually breaks down. Unlike the Stokes theory, the coefficients 
of the wave model adjusts properly according to the local depth hence enable 
the model simulate the proper wave form for the depth concerned. 

400 600 
Distance (m) 

1200 

110 
Distance (m) 

1035 
Distance (m) 

1095 

Figures 5a, b, c: Trai sformation of an initially second-order Stokes wave train into 
a cnoidal wave train over a uniformly decreasing water depth. The two closer views 
show respectively the deep and shallow water regions. (Vertical scale is arbitrary.) 
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Concluding Remarks 

Various forms of a recently proposed nonlinear refraction-diffraction model 
have been presented along with analytical investigations examining its nonlin- 
ear and dispersion characteristics. Sample simulations using the time-dependent 
nonlinear mild-slope equation and its unidirectional form have been performed. 
The proposed equations do not have any depth restriction and accommodate 
exact linear shoaling characteristics over mild-slopes so long as the incident 
wave frequency coincides with the specified dominant frequency of the wave 
model. The equations also include all the second-order nonlinear contributions 
and therefore can simulate the cnoidal waves and the Stokes waves with equal 
accuracy. The proposed equations may thus be regarded models for the com- 
bined nonlinear refraction-diffraction of waves over arbitrary depths. It is also 
worthwhile to emphasize that the applicability of the model equations is not 
limited to periodic waves; narrow-banded random waves may as well be simu- 
lated accurately. 
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