
CHAPTER 51 

Fully Nonlinear Properties of Periodic Waves 
Shoaling over Slopes 

Stephan T. Grilli*, M. ASCE, and Juan Horrillo2 

ABSTRACT : Shoaling of finite amplitude periodic waves over a sloping bottom is 
calculated in a numerical wave tank which combines: (i) a Boundary Element Model 
to solve Fully Nonlinear Potential Flow (FNPF) equations; (ii) an exact generation 
of zero-mass-flux Streamfunction Waves at the deeper water extremity; and (iii) an 
Absorbing Beach (AB) at the far end of the tank, which features both free surface 
absorption (through applying an external pressure) and lateral active absorption (using 
a piston-like condition). A feedback mechanism adaptively calibrates the beach 
absorption coefficient, as a function of time, to absorb the period-averaged energy of 
incident waves. 

Shoaling of periodic waves of various heights and periods is modeled over 1:35,1:50, 
and 1:70 slopes (both plane and natural), up to very close to the breaking point. Due to 
the low reflection from both the slope and the AB, a quasi-steady state is soon reached 
in the tank for which local and integral properties of shoaling waves are calculated 
(K„ c, H/h, kH, rjm, Sxx,...). Comparisons are made with classical wave theories 
and observed differences are discussed. Parameters providing an almost one-to-one 
relationship with relative depth kh in the shoaling region are identified. These could 
be used to solve the so-called depth-inversion problem. 

INTRODUCTION 

In the coastal region, incident ocean waves propagating towards the shore (in direc- 
tion x; Fig. 1) increasingly feel the effects of the reducing depth h(x), due to the 
sloping ocean bottom. These effects induce significant changes in wave shape, height 
H, length L, and phase celerity c, while the wave period T stays closely constant. 
Predicting such changes (usually referred to as wave shoaling) up to the point waves 
become unstable and break (breaking point; BP) is one of the important tasks of coastal 
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engineering. Characteristics of waves at the BP indeed are used to design coastal struc- 
tures and predict littoral sediment transport; detailed wave kinematics at the BP is also 
needed for surfzone models which are increasingly used in coastal engineering re- 
search and design. In the more specific problem referred to as depth inversion, one 
seeks to predict the nearshore bottom topography based on observed characteristics of 
shoaling waves (e.g., through remote sensing). Hence, simple relationships between 
these and h(x) are sought after. 

In most wave transformation models used so far, shoaling of deep water waves 
is calculated based on linear or weakly nonlinear theories (e.g., modified Boussinesq 
eqs.) and using semi-empirical breaking criteria to locate the BP. Such theories, 
however, despite their satisfactory predictions in deep and intermediate water, may not 
be sufficiently accurate close to the BP where wave height reaches a significant fraction 
of the depth. Highly nonlinear waves have been modeled using a higher-order Fourier 
steady-wave theory (FSWT), e.g., by Sobey and Bando3 (1991). In the latter work, up 
to three conservation equations for mass, momentum, and energy flux, are expressed 
to propagate incident waves over a mildly sloping bottom. In such an approach, 
however, the bottom slope is replaced by a cascade of horizontal steps and, hence, 
wave profiles do not take the characteristic skewed shape observed in experiments 
before breaking occurs. As a result, wave kinematics and dynamics cannot be well 
represented close to the BP4. Finally, in this approach, breaking corresponds to the 
highest wave which is stable over constant depth. This is quite unrealistic since, as 
we will see, skewness and unsteadiness allow waves to reach a larger height before 
they break. 

To accurately predict wave properties close to the BP, we will show that, in 
addition to full nonlinearity, even for mild slopes, the influence of bottom topography 
on wave shape must be included in shoaling models. Time dependent models based 
on fully nonlinear potential flow (FNPF) theory have this capability, provided proper 
wave generation and absorption methods are implemented (e.g., 2D : Klopman, 1988; 
Grilli et al, 1989; Cointe, 1990, Cooker, 1990; Ohyama and Nadaoka, 1991; 3D 
: Romate, 1989; Broeze, 1993). Hence, with such models, a "numerically exact" 
solution can be obtained for waves shoaling over an arbitrary bottom geometry, for 
which no approximation other than potential flow theory is made. 

NUMERICAL MODEL 

The two-dimensional FNPF model by Grilli, et al. (1989, 1990, 1996) will be used to 
compute characteristics of periodic waves shoaling over both plane and natural slopes, 
up to a very high fraction of the breaking height (Fig.  1). FNPF computations can 

3 Also see their detailed review of other similar works. Note, Johnson and Arneborg (1995) followed 
a similar approach using a fourth-order perturbation method. 

4The authors nevertheless assume that integral properties should be insensitive to such details and 
are thus well predicted by a FSWT. The latter assumption is quite questionable, since radiation stresses, 
for instance, are strongly influenced by wave skewness. 
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Figure 1: Sketch for FNPF computations of a periodic wave shoaling over a plane 
slope s, in a "numerical wave tank". 

model overturning waves but, by nature, are limited to prior to the time touch-down of 
a breaker jet first occurs. This does not pose problems when solitary waves are used in 
the analysis, as it has often been the case in the past5. For periodic or irregular waves, 
however, an absorbing beach (AB) must be used to absorb the energy of incident 
waves, hence eliminating reflection and preventing these from breaking at the top of 
the slope. 

Grilli and Horrillo (1996) implemented such an AB in the model over a shallower 
region located in the upper part of the slope whose geometry was specified somewhat 
similar to natural bars on beaches6 (Fig. 1). Energy absorption combined both free 
surface and lateral absorption with an adaptive calibration of the absorption coefficient 
: (i) an exterior counteracting pressure is specified on the AB free surface, proportional 
to the normal particle velocity (Cointe, 1990; Cao et al., 1993), to create a negative 
work against incident waves; this is shown to absorb high frequency wave energy 
well; (ii) a piston-like (active) absorbing boundary condition is specified at the tank 
extremity rr2 ("absorbing piston", AP), which is shown to absorb low frequency 
wave energy well (C16ment, 1996); (iii) the AB's absorption coefficient is adaptively 
calibrated in time to absorb the period-averaged energy of incident waves entering 
the beach at x = x\. Grilli and Horrillo developed and tested this AB and showed 
that wave reflection could be reduced to a few percent only. Hence, in a "numerical 
wave tank" such as sketched in Fig. 1, computations for periodic waves can reach 
a quasi-steady state for which properties of shoaling waves can be calculated, up to 
very close to the BP, and compared to results of other shoaling methods (theory or 
models), which usually assume there is no reflection from the slope or beach. [In the 
present method, reflection from the slope still occurs as it does in nature.] 

Incident waves can be arbitrary in the model but, for sake of comparison with 
other wave theories, permanent form wave solutions of the FNPF problem are gener- 
ated on the leftward boundary (rrl, Fig. 1). These are so-called streamfunction waves 

5In such cases, FNPF calculations can predict characteristics of breaking solitary waves within 2% 
of experimental measurements (Grilli etal, 1994, 1997) 

6In this case, gradual deshoaling of waves occurs in the AB which helps absorbing wave energy. 
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(SFW; Dalrymple 1974; Dean and Dalrymple 1984) which, unlike finite amplitude 
waves produced by a wavemaker, do not exhibit the generation of higher harmonics 
and the beat phenomenon observed in wave tanks as they propagate over constant 
depth (e.g., Chapalain et al., 1996). Since SFW's have a non-zero mass flux, they 
are generated in the model together with a mean current, equal and opposite to their 
period-averaged mass transport velocity (Grilli and Horrillo, 1996). Hence, volume 
stays constant within the "numerical wave tank" as it would on a beach for which the 
undertow current balances the incident mass flux at some distance from the shore. 

Details of model equations, numerical methods and validation applications can 
be found in the above-referenced papers. It will just be mentioned that Laplace's 
equation is solved in the model, over domain fi, based on a higher-order Boundary 
Element Method (BEM) derived from Green's 2nd identity. Boundaries are discretized 
using N nodes and M higher-order elements are specified to interpolate in between the 
nodes. Quadratic isoparametric elements are used on lateral and bottom boundaries 
(rri, Tr2, Tb) and cubic elements ensuring continuity of the slope are used on the 
free surface boundary Tj (Grilli and Subramanya 1996). The nonlinear free surface 
kinematic and dynamic boundary conditions are time integrated using second-order 
Taylor series expansions expressed in terms of a time step At and of the Lagrangian 
time derivative. Numerical errors are kept to a very small value by adaptively selecting 
the time step based on a mesh Courant number C0(t) (Grilli and Svendsen, 1990; Grilli 
and Subramanya 1996). In shoaling computations, as waves become increasingly steep 
towards the top of the slope, discretization nodes may get quite close to each other and 
create quasi-singular values for the BEM integrals, leading to poor accuracy. Hence, 
the adaptive regridding method developed by Grilli and Subramanya (1996) is used 
to automatically regrid nodes three by three when the distance between two nodes is 
either more than 4 times or less than 0.25 times the distance between the previous 
two nodes. In the following applications, a minimum of 20 nodes per wavelength is 
maintained throughout shoaling. 

APPLICATIONS 

Figure 1 illustrates a typical set-up for shoaling computations : (i) incident zero- 
mass-flux SFW's are generated on rri (in depth h0, with height H0 and period T; 
o-indices denote deep water values); (ii) waves propagate up the sloping bottom 
and are absorbed in the AB/AP; (iii) since reflection is very small from both the 
sloping bottom and the beach, computations soon reach a quasi-steady state for which 
successive waves undertake similar transformations (see Grilli and Horrillo, 1996, 
for a detailed discussion of numerical parameters and results); (iv) model parameters 
are tuned-up to let incident waves shoal up to impending overturning before they are 
absorbed in the AB. Numerical "wave gages" are specified at several fixed locations, 
x = xg, over the slope where wave characteristics are calculated, both on the free 
surface (e.g., elevation r){xgt t)) and as a function of depth z (e.g., velocity u(xg, z, t), 
dynamic pressure po{xg, z, t)). 
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Figure 2:   (a) shoaling coefficient K, = H/H0\ (b) celerity c; and (c) left/right 
asymmetry st/si, for periodic waves shoaling over a 1:50 slope, with H'a = H0/h0 = 
( ) 0.04, ( ) 0.06, and ( ) 0.08, and V = T^fh0 = 5.5 : (n) FNPF 
results; (s) Sobey and Bando's (1991) FSWT results; ( ) LWT results; (c) CWT 
results. c0 = gT/(2ir) is the (linear) deep water celerity. 
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Local wave properties 

After quasi-steady state is reached, successive incident waves are identified and tracked 
in the results : (i) envelopes of crest and trough elevations are calculated, from which 
wave height H(x) and shoaling coefficient Ks(x) = H/H0 are obtained; (ii) phase 
velocity c(x) is calculated from the time derivative of crest trajectories; (iii) to quantify 
wave skewness, forward and backward normalized wave slopes are calculated as, 
S2{x) — ^/(•So-^2) and, S}(x) = H]/(s0L\), respectively, in which (Li,!^) and 
(if 1, H2) denote horizontal and vertical distances from a crest to the previous and next 
troughs, respectively, and s0 = 2H0/L0 = k0H0/T. Results show that these quantities 
are quite well reproduced as a function of x, for successive incident waves (Grilli and 
Horrillo, 1996); in the applications, however, to eliminate small variations, ensemble 
averages of these quantities for each x are calculated over at least 4 successive waves. 

In the model, waves are found to shoal up the slope, qualitatively, as expected 
from linear wave theory (Fig. 1) : (i) both wavelength L and celerity c = L/T 
continuously decrease; (ii) deshoaling first occurs, with a reduction in wave height, 
followed by shoaling and an increase in wave height up to the top of the slope where 
waves almost reach overturning before entering the AB and decaying. 

More specifically, in Fig. 2, Ks, c, and S2/S1 have been plotted as a function 
of normalized depth k0h, for a bottom slope s =1:50 and three incident waves of 
normalized incident height H'a — H0/h0 =0.04,0.06, and 0.08, and normalized period 
T' = TJg/ho = 5.5 (k0 = (2ir)2/(gT2) is the (linear) deep water wavenumber). 
Results of linear (LWT) and cubic (CWT) Stokes wave theories are also indicated. 
For k0h < 0.5, significant differences are observed between FNPF results and the 
wave theories; this also corresponds to kh = l-wh/L < 0.77 (or H/h > 0.10; see 
Fig. 4b). For diminishing depths, due to increased nonlinearity, both K, and c 
become significantly larger than predicted by LWT (Figs. 2a and 2b) and, as could be 
expected, increasingly so with the incident wave height. CWT predicts celerity better 
for shallower depths but diverges in very shallow water. The more accurate FSWT 
performs reasonably well for predicting celerities (Fig. 2b) but does quite poorly 
for wave heights (Fig. 2a). This is likely due to the lack of skewness in modeled 
waves whereas FNPF results for S2/S1 (Fig. 2c) show that waves are significantly 
skewed—i.e., forward tilted, left/right asymmetric—for very shallow water (see also 
Fig. 1 for spatial wave profiles). 

The significant differences observed in Fig. 2 between FSWT and FNPF results 
show that, even for a very mild slope, the influence of actual bottom shape on local 
wave properties is important. Fig. 3 now investigates how this influence varies with 
bottom slope. An incident wave with H'a = 0.06 and T" = 5.5 is shoaled up three 
plane beaches of slopes s = 1:35,1:50, and 1:70, and a "natural beach" geometry with 
an average slope of 1:50. The natural beach has a depth variation defined according 
to Dean's equilibrium beach profile, h = A(x* — x)2l3, with x* denoting a constant, 
function of the location of the toe of the slope in depth h0, and A depending on the 
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Figure 3: FNPF results for : (a) shoaling coefficient; (b) celerity; and (c) left/right 
asymmetry, for periodic waves with H'a = 0.06 and T' = 5.5, on : 1:35 (curve a); 
1:50 (curve b); 1:70 (curve c), plane ( ) or natural ( ) beaches. ( ) LWT 
results; ( ) CWT results. 
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specified average slope. This "natural beach", hence, has a milder slope in deeper 
water and a steeper slope in shallower water. For the wave height and celerity, Figs. 
3a and 3b show fairly small differences between results calculated for the same depth 
on various slopes, for most of the shoaling region. The wave left/right asymmetry— 
S2/S1, shown in Fig. 3c—seems to be more sensitive to bottom slope, becoming larger 
for the shallower parts of the (steeper) 1:35 slope and the "natural beach". Overall, 
however, no major differences are observed provided wave properties are compared 
for the same normalized depth. 

Results in Fig. 3 imply that, for a given depth, local wave properties vary 
little for the same wave propagating over a range of mild slopes from 1:35 to 1:70. 
Hence, a broader parametric study will be carried out on a 1:50 slopes only, for 9 
waves combining heights, H'Q =0.04,0.06, and 0.08 and period, T' =5.5, 6.5, and 7.5. 
Results for each wave are given in Fig. 4 as a function, this time (due to the varying 
wave period), of the relative local depth kh. First, in Fig. 4a, we see that, for the phase 
celerity normalized by the linear wave celerity, q = c„ tanh kh, the larger the incident 
wave height and the smaller the period (or similarly the larger k0H0) then, for a given 
kh, the larger the celerity increase with respect to c(. Such results illustrate the well 
known amplitude dispersion effects due to increasing wave steepness7 kH which, for 
the studied cases in shallow water (kh < ir/10), lead to a 40 to 85% maximum increase 
in celerity with respect to linear wave theory. In Fig. 4b, we see that, in all cases, 
the wave height to depth ratios H/h reach O(l) values in the shallow water region, 
confirming the very strong nonlinearities. A similar analysis of shoaling coefficients 
would show that linear wave theory significantly underpredicts wave height for depths 
corresponding to H/h > 0.2 (which also corresponds to the region where celerity is 
significantly underpredicted in Fig. 4a); for the studied cases this underprediction 
of Ka is up to 55%. With regard to these results, it is anticipated that the quantity, 
kH/(k0H0) = Ka/(c/c0), i.e., the local wave steepness normalized by the deep 
water steepness, should exhibit somewhat less variations (i.e., overprediction) with 
respect to linear wave results, since underprediction of wave height and celerity should 
compensate each other to some extent. This is confirmed in Fig. 4c where we see, first 
of all, that all FNPF results follow quite a similar increase as a function of kh, up to 
maximum steepness, and that results of LWT (i.e., K„j tanh kh) are a better predictor 
of normalized wave steepness, with a maximum underprediction of only 11%, than 
for the other wave properties discussed above. Considering the many differences in 
wave shape, height and length, and kinematics, observed between FNPF and LWT 
results, the latter result is somewhat unexpected. 

Integral wave properties 

These are the mean water level r]m, the mean undertow current Um, the energy flux 
Ef, and the radiation stress Sxx. In the model, integral properties are computed at 

7Such effects are predicted at third-order by Stokes theory (CWT). 
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Figure 4: Periodic waves shoaling over a 1:50 slope. H'a = ( ) 0.04, ( ) 
0.06, and ( ) 0.08, and T" = : 5.5 (curves a); 6.5 (curves b); 7.5 (curves c). (- - 
-) LWT results; Q = c0 tanh kh, is the linear wave celerity. 
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Figure 5: Normalized (a) mean water level i\'m ~ r)m/h0H'0
2; and (b) radiation stress 

S'xx = SxxjpgHl (with p the fluid density), for three periodic waves shoaling over a 
1:50 slope. Symbols and definitions are as in Fig. 2. Results have been averaged over 
3T in the quasi-steady regime. Symbols (o) denote locations x = xg of "numerical 
gages". Corrections, Av'mo = -0.0274 and AS'xxo = ^(A^) + (A^0)

2/2, have 
been applied to the linear results for r)'m and S'xx, respectively, to account for the actual 
mean water level in depth h0 in the FNPF results. 
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Figure 6: Normalized amplitudes of first three harmonics (a,b,c), cti (i = 1,2,3), for 
three periodic waves shoaling over a 1:50 slope. Definitions are as in Fig. 2. 

"numerical gages" located at x — xg above the sloping bottom using classical equa- 
tions, i.e., through depth integrations and wave period-averaging involving, r)(xg,t), 
u(xg, z, t) and pc(a5g, z, t). To account for the non-zero mean Eulerian velocity in 
the model (resulting from specifying zero-mass-flux incident waves at boundary TTl), 
and for the set-down r)m, expressions of integral properties are corrected following 
Klopman (1990) and Jonsson and Arneborg (1995). In the model, time averaging is 
performed at time t, for the results calculated from time t — T to t. Time series of 
integral properties are thus obtained for each gage location xg. When computations 
reach a quasi-steady state, integral properties stabilize to fairly constant values in 
time for each gage location. To eliminate small time fluctuations and oscillations of 
integral properties with respect to these constant values, averages are calculated over 
3T, before results are analyzed. 

In all cases, the energy flux is found to be very close to constant at the gages lo- 
cated in the region where wave height increases (e.g., over the shoaling parts of curves 
in Figs. 2a and 3a). This indicates that reflection is small from both the sloping bottom 
and from the AB. As depth decreases, the mean undertow current increases roughly 
proportionally to 1/A, as expected from the period-averaged continuity equation, and 
then decreases when wave height starts decreasing. 

Mean water level and radiation stress results are given in Fig. 5, for the same 
three waves as in Fig. 2, shoaling over a 1:50 slope. As expected, the normalized 
r]m in Fig. 5a follows a trend opposite to Sxx in Fig. 5b, first setting-down over the 
slope and then stabilizing towards the top of the slope and increasing in the AB due 
to wave height reduction. In shallow water, the set-down becomes relatively larger, 
the smaller the incident wave, as a result of the steeper drop in radiation stresses for 
the larger waves. Results obtained from a first-order nonlinear perturbation of LWT 
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(FNLT; Dean and Dalrymple, 1984) and adjusted to match the initial FNPF set-down 
in depth h0, show reasonable agreement with FNPF results. In the shallower region 
at the top of the slope, however, FNLT results do not capture the leveling-up of 7/m. 
Radiation stresses in Fig. 5b gradually increase while wave height increases and 
depth decreases, following the expected pattern from FNLT, which predicts results 
quite well in the deeper water region. At some stage, however, FNPF results become 
smaller than FNLT results, and more so, for a given depth, the larger the incident wave 
height. A more detailed analysis of these results would show that this decrease in Sxx 

is strongly correlated with the increase in "skewness index" sij's\, shown earlier in 
Fig. 2c for kah < 0.45; this confirms that radiation stresses are quite sensitive to wave 
shape. 

Fourier analysis 

Another way of analyzing how wave shape changes during shoaling is to calculate 
Fourier transforms of wave surface elevations rj(xg,t) obtained at fixed gages at 
x = xg. Harmonic amplitudes can then be plotted as a function of xa. This was 
done in Fig. 6 which shows normalized amplitudes of the first three harmonics c^ 
(i = 1,2,3), for the same three waves as in Fig. 2 shoaling over a 1:50 slope. In 
all cases, in the shoaling region where wave height increases (Fig. 2a), after a slight 
initial increase, ax decreases while a2 and a^ continuously increase. This indicates 
that, in shoaling periodic waves, energy is being continuously transferred to higher- 
order harmonics, as a result of nonlinear interactions. As could be expected, for a 
given depth, this nonlinear energy exchange is stronger, the larger the incident wave 
height, and the energy transfer to the higher-order harmonics thus starts occurring in 
deeper water. Not surprisingly, variations of the "skewness index" S2/S1 in Fig. 2c 
are strongly correlated with variations of a2 and (particularly) of a3 in Fig. 6. 

Conclusions 

A numerical wave tank was used to model finite amplitude periodic waves shoaling 
over a sloping bottom. Periodic waves of various heights and periods, covering the 
range k0H0 = [0.028 ,0.105], were modeled over 1:35, 1:50, and 1:70 slopes (both 
plane and natural), up to very close to the breaking point. Due to the low reflection 
from the slope and the AB, a quasi-steady state was soon reached in the tank for which 
both local and integral properties of fully nonlinear shoaling waves were calculated 
(Ks, c, 32/31 (left/right asymmetry), H/h, kH, r]m, Sxx). 

For a shallow enough normalized depth (k0h < 0.5 or kh < 0.77), significant 
differences are observed between FNPF results and 1 st (LWT), 3rd (CWT), and higher- 
order steady wave (FSWT) theories. For the first two theories, low-order nonlinearity 
is clearly the main reason for the observed differences in a region where H/h = 0(1); 
in the latter theory, the lack of wave skewness and the representation of the bottom by 
horizontal steps likely explain the observed differences. 
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Despite the significant effects of actual bottom shape on the results, for the range 
of tested mild slopes, FNPF results are found fairly similar for the same wave taken at 
the same normalized depth (k0h or kh). This, hence, allows us to use kh as the unique 
parameter describing a mild bottom variation and to compute additional results on a 
unique mild slope (1:50). In these results, for the range of tested waves, the normalized 
wave steepness, kH/k0H0, shows an almost one-to-one relationship with kh in the 
shoaling region. Steepness thus could be used to solve the so-called depth-inversion 
problem. Quite surprisingly, due to a partial compensation of nonlinear effects for 
the wave height and celerity, LWT is found quite a good predictor of this parameter 
(maximum difference is 11%), whereas discrepancies for H and c reach 55 and 85%, 
respectively. 

For the tested waves, set-down is quite well predicted by the first-order pertur- 
bation of LWT, except in the shallower region, where it is smaller, following the steep 
drop in radiation stresses. [This could also be partly due to the mean undertow current. 
More work remains to be done about this.]. Radiation stresses are overpredicted by the 
first-order theory in the region where wave left/right asymmetry s2/si (i.e., skewness) 
becomes large, confirming the sensitivity of this parameter to wave shape. Otherwise, 
agreement with the theory is quite good. A Fourier analysis of surface profiles r)(xg, t) 
calculated for gages located at x = xg shows a continuous transfer of energy from the 
fundamental to higher-order harmonics in the shoaling region, illustrating nonlinear 
interactions in the shoaling wave field. The 3rd-harmonic amplitude a3 is strongly 
correlated with s2/si. 
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