
CHAPTER 40 

Kinematic Predictions in Large 
Shallow Water Waves. 

Susan Smith1 & Christopher Swan2. 

Abstract. 

The present paper concerns the description of extreme waves in shallow 
water, and in particular contrasts the success of two recently developed wave 
theories (Sobey, 1992 and Baldock and Swan, 1994) to model the maximum water 
particle velocities arising beneath a highly nonlinear and transient (or unsteady) wave 
event. To achieve these comparisons exact numerical calculations were undertaken 
using the time-stepping procedure outlined by Dold and Peregrine (1984). 
Comparisons between this numerical "data" and the kinematics models confirm the 
importance of both the non-linearity and the unsteadiness, and further suggest that 
the nature of the wave-wave interactions has important implications for the accuracy 
of the kinematics predictions. In particular, the local Fourier series solution (Sobey, 
1992) is shown to be unable to model the global wave frequency-difference terms, 
and therefore tends to over-predict the fluid velocities beneath the still water level. In 
contrast, the double Fourier series solution (Baldock and Swan, 1994) explicitly 
incorporates both the nonlinearity and the unsteadiness of the wave, and typically 
provides a good description of the flow field beneath the still water level. However, 
this solution is limited in terms of the total number of Fourier components included, 
and consequently the largest velocities arising close to the water surface are typically 
under-predicted in the largest wave events. Nevertheless, both kinematics models 
provide a significant improvement over the existing design solutions. 

Introduction. 

Within both  coastal  and  offshore  engineering the identification  of an 
appropriate wave climate represents a fundamental input into the design process. If, 
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as is usually the case, design calculations are required to assess the applied fluid 
loading, the stability and transport of bed material, or the potential for over topping, 
a second and equally important aspect of the design involves the prediction of the 
water particle kinematics. In respect of this latter point current design procedures are 
either based upon a non-linear steady wave theory, or an unsteady linear theory. In 
the first of these cases the wave model incorporates the non-linearity of the wave 
motion, but neglects the unsteadiness or the transient nature of the sea state. Indeed, 
within this category the most commonly applied model is based upon a fifth-order 
Stokes' solution (Fenton, 1985). In this case a large wave is characterised by a 
representative wave height (H) and a wave period (T), and it is assumed that the 
wave forms part of a regular wave train which propagates without change of form. 
Alternatively, a higher-order stream function solution (Dean, 1965) may also be 
applied in which the wave profile is either specified in terms of H and T, or the series 
solution is matched to a measured surface profile, r\(i), using some form of 
constrained minimisation. However, in both applications of the stream function 
solution the wave is assumed to propagate without change of form, and thus the 
dispersive properties are neglected. 

In contrast, a linear random wave theory recognises the fact that a realistic 
sea state comprises a large number of wave components, many of which may be 
described as free waves and thus travel at a phase velocity (c) which is only 
dependent upon the wave period (T) and the water depth (d). Solutions of this type 
fall into the second category (noted above) in that they partially incorporate the 
unsteadiness of the sea state, but are restricted in the sense that they neglect the 
nonlinearity. Indeed, in solutions of this type all terms of order a2k2 and above 
(where a is the wave amplitude and k is the wave number ) are neglected. As a 
result, such solutions make no attempt to model the nonlinear wave harmonics which 
include both the higher-order Stokes' terms and the nonlinear wave-wave interactions 
arising between two or more frequency components (Longuet-Higgins and Stewart, 
1960). 

Unfortunately, it is now widely recognised that the largest waves within a sea 
state are both nonlinear and unsteady. As such, they do not arise as part of a regular 
wave train, but occur as individual events within a random, or irregular, sea state. If 
one considers a typical broad-banded spectrum in deep water, frequency dispersion 
provides a plausible explanation for the evolution of the largest wave events. In this 
case the extreme events are produced by constructive interference when a large 
number of wave crests arise at one point in space and time. Indeed, recent field 
measurements undertaken at the Tern Platform (Rozario et al, 1993) have confirmed 
the validity of this argument, and have demonstrated that the most probable shape of 
the largest wave is closely related to the auto correlation function of the underlying 
wave spectra (Tromans et al, 1991). 

However in intermediate and shallow water depths the evolution of the 
largest waves is perhaps more complicated. For example, although frequency 
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dispersion provides an effective method of focusing wave energy in all but the 
shallowest water depths (kd< 0.4), large waves may also be related to changes in the 
local bathometry (Peregrine, 1983); the interaction with uniform and depth-varying 
currents (Swan, 1990, 1992); or the occurrence of side-band instabilities (Benjamin 
and Feir, 1969). Although these effects are entirely separate, they will each produce 
extreme events which are both highly non-linear and unsteady. As a result, it is clear 
that the present design solutions do not model the fundamental characteristics of the 
largest wave events. Indeed, previous work presented by Baldock and Swan (1994) 
and Baldock, Swan and Taylor (1996) has considered large deep water waves, and 
has demonstrated that the underlying kinematics can only be predicted if both the 
nonlinearity and the unsteadiness is taken into account. However, the relative 
importance of these effects in shallow water remains unclear. For example, recent 
experimental observations (Baldock and Swan, 1996) have shown that the transfer of 
energy to the nonlinear harmonics is strongly dependent upon the water depth. 
However, these results are primarily concerned with intermediate water depths, and 
only contrast the measured data with one fully nonlinear unsteady wave model. The 
present paper will address this point, and will consider the extent to which recently 
developed wave theories are able to model extreme shallow water waves. In 
particular, exact numerical calculations based on the time-stepping procedure 
outlined by Dold and Peregrine (1984) will be used to contrast the kinematic models 
presented by Sobey (1992) and Baldock and Swan (1994). 

Kinematics Models. 

In recent years the possible inadequacy of the existing design solutions has 
been recognised, and in particular two alternative wave models have been proposed. 
In both cases these models are based upon a time-history of the water surface 
elevation measured at one spatial location, r|(t), and are thus appropriate to design 
calculations. In particular, they represent a significant improvement over the existing 
design solutions in that they attempt to incorporate both the nonlinearity and the 
unsteadiness of the wave motion. The first model, proposed by Sobey (1992) is 
based upon a local Fourier series approximation originally outlined by Fenton (1992). 
Within this solution the time-history of the water surface elevation, rj(t), is sub- 
divided into a large number of local windows within which the surface profile is 
assumed to be locally steady. This does not imply that the entire wave form 
propagates without change of form, merely that a small section of the wave profile is 
locally steady during the time interval that it passes the measuring point. If (x, z) 
represent the usual Cartesian co-ordinates in which z=0 corresponds to the still water 
level, and z=-d represents the bottom boundary, a velocity potential § may be defined 
within each window such that: 

J-,   . cosh(jk(d + z))     , . 
#x,*,y) = CEx + 2^ A  —TT A—sm{jkx - jcot) 

,-=,     '     smhykd) 

(1) 
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where CE is the co-flowing Eulerian current, co is the fundamental wave frequency (or 
27t\T, where T is the corresponding wave period) and k is the fundamental wave 
number (or 2nXk, where A, is the wave length). The constant coefficients Aj (for j = 1 
to J) thus represent the amplitudes of the individual harmonics which are determined 
by minimising the errors in the free surface boundary conditions. Within this solution 
the input parameters correspond to the upper limit of the series expansion (or the 
truncation order J), the local window length (x), and the time interval between 
adjacent data describing the surface profile (At). Although the minimisation 
procedure is somewhat involved, and the outcome strongly dependent upon the input 
parameters, the scheme is computationally efficient, and suitable for use on a 
standard personal computer. 

In contrast, the wave solution proposed by Baldock and Swan (1994) 
explicitly includes both time and space dependence. This solution is based upon a 
double Fourier series solution first proposed by Lambrakos (1981), and adopts a 
velocity potential defined by: 

M    N 

<Kx,z,t) = Z Zcosh*(* + <o[ A„cos(M - <°J) + iL,sin(^* - aj)] 

(2) 
In this case the proposed solution incorporates a total of M wave numbers each with 
M frequency components (where typically N = M), such that a total of 2NM wave 
harmonics are included within the overall solution. If Ti defines some large 
fundamental period, over which the solution is assumed periodic, the fundamental 
wave frequency is defined by Oi = 27t\Ti, and the corresponding wave number (ki) is 
calculated using the linear dispersion equation. Having identified these values the 
solution matrix (k^ ©m) is assembled from wave numbers and frequency components 
which are integer multiples of the fundamental: 

kn =nku (om=mwl 

(3) 
The final solution is again based upon a time-history of the water surface 

elevation measured at one spatial location (i.e. t, (t) at x = 0). In effect the unknown 
coefficients Am, and Bnm, together with the unknown surface profiles at all other 
spatial locations (i.e. r) (t) at x ^ 0), are determined by a minimisation of the error in 
the nonlinear free surface boundary conditions arising at all points in space and time. 
Provided the fundamental period is sufficiently large relative to the dominant (or 
peak) wave period, an appropriate mix of free waves and bound waves are generated. 
As a result, the final wave solution deforms in both space and time, and has to date 
been shown to provide a good description of the wave-induced water particle 
kinematics arising in deep water (Baldock and Swan, 1994). 

To assess the effectiveness of these solutions in intermediate and shallow 
water depths, we have sought to compare the predicted water particle velocities with 
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exact numerical calculations based upon the time-stepping procedure outlined by 
Dold and Peregrine (1984). Previous studies (Johannessen and Swan, 1996) have 
shown that these and other time-stepping procedures (notably Longuet-Higgins and 
Cokelet (1976), Fenton and Rienecker (1980) and Craig and Sulem (1993)) are in 
near-perfect agreement with laboratory data, and thus provide an excellent 
benchmark with which to test potential design solutions. At this stage it should be 
noted that these time-stepping solutions, although exact, are not appropriate for 
typical design calculations since they are based upon initial conditions which require a 
spatial representation of both the water surface elevation and the velocity potential at 
the water surface (i.e. r\(x) and <j>(x) at z=r\). This information is seldom available in 
a laboratory study, and never available from field data. 

Test Conditions. 

To assess the effectiveness of the wave solutions three test cases were 
considered in which an extreme wave group was produced in a water depth of 
d=0.7m, 0.3m, and 0.15m respectively. In each case the underlying frequency 
spectrum was broad-banded (at a laboratory scale), and consists of a total of 29 
frequency components which were each of equal amplitude and equally spaced within 
the period range 0.6 < T < 1.4s. Expressed in terms of an energy spectrum within the 
frequency domain this distribution of wave components has a peak frequency at 
approximately 0.71Hz, and decays according to a"4. In each of the three test cases 
the initial conditions used to commence the time-stepping procedure were such that 
the wave energy was fully dispersed within the spatial domain. On this basis a linear 
wave theory was used to provide both the surface elevation T](X) and the magnitude 
of the velocity potential at the surface (<|>(x) at z=r|(x)). However, the relative 
phasing of the wave components was such that after a large number of time-steps 
(typically larger than 100) frequency dispersion produced a focusing of wave energy 
such that a large highly nonlinear wave event was generated at one point in space and 
time. The numerically predicted horizontal velocities, u(z), arising beneath this large 
wave event were chosen as an appropriate yard-stick with which to judge the success 
of the kinematics models discussed previously. 

Discussion of Results. 

Figures la-lc concern the broad-banded spectrum (0.6s > T > 1.4s) in the 
three different water depths (d = 0.7m, 0.3m, and 0.15m respectively), and describes 
the time-history of the water surface elevation, r)(t), predicted at the spatial location 
at which the maximum crest elevation arises. In each of these cases the exact 
numerical calculations (following Dold and Peregrine, 1984) are compared to both a 
linear wave solution and a second-order approximation based upon the sum of the 
interactions identified by the Longuet-Higgins and Stewart (1960). These latter two 
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models are based upon the twenty nine free waves which were initially implemented 
within the time-stepping procedure, and are thus very different to either a linear 
random wave theory or a hybrid second-order solution (Stansberg, 1993) based upon 
a Fourier analysis of the measured water surface elevation. To facilitate comparisons 
of this type the time base on the horizontal axis has been shifted such that (for each 
wave solution) the maximum crest elevation arises at t=0. Comparisons of this type, 
and in particular the difference between the exact numerical calculations and the 
linearly predicted results, demonstrate the importance of the nonlinear wave-wave 
interactions. For example, in deep water conditions (d=0.7m) figure la suggests that 
a linear solution underestimates the maximum crest elevation by approximately 25%; 
while the inclusion of the second-order terms only accounts for approximately 30% 
of the total nonlinear effects. These results are consistent with deep water data 
presented by Baldock and Swan (1994). 

However, comparisons with figures lb and lc clearly suggest that the nature 
of the nonlinear contribution differs significantly with the water depth. For example, 
in figure lb (corresponding to a water depth of 0.3m) the nonlinear increase in the 
maximum crest elevation is reduced to approximately 20%; while the second-order 
interactions account for approximately 50% of this increase. Furthermore, if one 
considers the shallow water depth (d=0.15m in figure lc) there is almost no nonlinear 
increase in the maximum crest elevation when compared to a linear theory based 
upon the component free waves. However, the maximum crest elevation (relative to 
linear theory) does not alone provide an appropriate measure of the nonlinearity of a 
wave form. Indeed, if one considers the steepness of the wave profiles outlined in 
figures la-lc, there is almost no change depending on the water depth. 

An explanation for this effect lies in the nature of the nonlinear wave-wave 
interactions and, as will be indicated below, these also have implications for the 
ability of the nonlinear wave models to accurately predict the water particle 
kinematics. If one considers the second-order solution originally outlined by 
Longuet-Higgins and Stewart (1960), the nonlinear wave-wave interactions may be 
subdivided into two categories. Firstly, there are the so-called frequency-sum terms 
which correspond to a transfer of energy into the short wave or high frequency 
components. These may be interpreted as representing local nonlinear wave-wave 
interactions, and are responsible for increases in the local energy density as well as 
the increase in the maximum crest elevation. In contrast, the second category of 
interactions are represented by the so-called frequency-difference terms. These 
correspond to a transfer of energy into the long wave, or low frequency, wave 
components. These interactions may be interpreted as representing the global 
changes which are, in particular, responsible for the set-down beneath the wave 
group. 

Before considering the relative magnitude of these varying nonlinear wave- 
wave interactions, we will first contrast the ability of the nonlinear kinematics models 
discussed previously (namely Sobey, 1992 and Baldock and Swan, 1994) to 
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Figures la-lc. Time-histories of the water surface elevation, r|(t). 
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reproduce the exact numerical calculations provided by Dold and Peregrine (1984). 
Figures 2a-2c again relate to the broad-banded spectrum in three different water 
depths, and describe the depth variation in the maximum horizontal velocity, u(z), 
arising beneath the largest wave crest (i.e. t=0 in figures la-lc). Since the kinematics 
models are both based upon a least squares fit to the predicted nonlinear surface 
profile, it may be assumed that in all cases the surface profile, r|(t), is well 
represented by these models. Indeed, if this were not the case the underlying 
kinematics could not be confidently predicted. However, despite near-perfect 
agreement with the surface profile, the predicted kinematics show considerable 
variation. For example, in the deep water case (d=0.7m on figure 2a) the double 
Fourier series solution (Baldock and Swan, 1994) provides a very good description 
of the nonlinear kinematics up to the still water level, but slightly underestimates the 
maximum velocities within the vicinity of the water surface. In contrast, the local 
Fourier series solution (Sobey, 1992) provides an excellent description of the 
kinematics within the wave crest, but wildly underestimates the horizontal velocities 
beneath the still water level. 

The reasons for these discrepancies are clear. Firstly, the double Fourier 
series solution is based upon a fifteenth order approximation (or N=M=15 in 
equation 2), and thus incorporate a total of 225 harmonics. However, since the peak 
of the input spectrum arises at N=M=3, the accuracy of the solution is approximately 
equivalent to a fifth-order Stokes' solution. Since the wave events under 
consideration are extremely steep (within 5% of their breaking limit), it is not at all 
surprising that this level of approximation underestimates the near-surface crest 
kinematics. Unfortunately, the nature of this solution is such that small increases in 
the order of the approximation (i.e. N=M=18) provides little by way of increased 
accuracy, but has a large effect upon the computational requirements. Indeed, 
significant increases in the order of the approximation become practically unrealistic. 
In contrast, the local Fourier series solution is only fitted to a small section of the 

wave profile in any one window, and in the vicinity of the largest crest the curvature 
of the surface profile is such that the solution locates a large proportion of the wave 
energy in the high frequency range. As a result, it obtains a good description of the 
surface profile and the near-surface kinematics, but the predicted velocities decay too 
rapidly with depth (as is consistent with high frequency wave components), and the 
solution thus underestimates the kinematics at all points beneath the still water level. 

A similar pattern of results is also presented in figures 2b and 2c 
corresponding to water depths of d=0.3m and 0.15m respectively. In each of these 
cases (and indeed many other cases which have also been investigated) the local 
Fourier series solution provides a good description of the maximum horizontal 
velocities arising close to the water surface. However, with increasing depth beneath 
the surface, the description becomes poor. In contrast, the double Fourier series 
solution provides reasonable agreement over most of the water column, but 
consistently under-predicts the largest velocities arising close to the water surface. 
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Figures 2a-2c. Horizontal velocities beneath the wave crest, u(z). 
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To explain the varying success of these solutions, and in particular its 
dependence on the water depth, the normalised power spectra derived from a Fourier 
transform of the numerically predicted water surface elevations are presented on 
figures 3a-3c. In the deep water case (figure 3a) it is clear that the dominant 
nonlinear interactions generate high frequency or frequency-sum terms which in turn 
produce a large increase in the local energy density in the vicinity of the large wave 
crest. This is consistent with the experimental study presented by Baldock, Swan and 
Taylor (1996), and explains the large local increase in the maximum water surface 
elevation. However, as the water depth reduces it becomes apparent that there is a 
larger transfer of energy into the low frequency, or frequency-difference, terms. 
These results are consistent with the analysis of measured wave records presented by 
Mansard et al (1988), and with recent laboratory data presented by Baldock and 
Swan (1996). The relative importance of the total nonlinearity within the numerically 
calculated wave profiles is further considered in figure 4a. Within this figure each 
water depth has been considered separately, and the total transfer of energy out of 
the input range (ie. 0.6<T<1.4 or 4.5<©<10.5) has been determined from the wave 
spectra given in figures 3a-3c. At first sight these results are perhaps unexpected 
since it suggests that the shallow water case (d=0.15m) represents the most nonlinear 
wave form, at least defined in terms of energy transfers, despite the fact that the 
maximum crest elevation in this case shows no significant increase above the linearly 
predicted value (figure lc). However, the reasons for this are clarified in figure 4b 
where the relative importance of the local and global nonlinearity is addressed. In 
this case the transfer of energy into the high and low frequencies are expressed as a 
percentage of the total energy transferred out of the input range for each water depth. 
These results clearly suggest that in deep water the local nonlinearity is dominant; 
while a reduction in the water depth leads to an increase in the importance of the 
frequency-difference terms, and a reduction in the importance of the frequency-sum 
terms. As a result, in the shallow water case (d=0.15m) the transfer of energy into 
the frequency-difference terms (or global interactions) is larger than the transfer of 
energy into the frequency-sum terms (or local interactions). 

This variation in the nature of the nonlinearity explains the success (or 
otherwise) of the kinematics models. For example, the double Fourier series solution 
is based upon a best fit to a measured (or in this case predicted) time-history of the 
water surface elevation which includes several complete wave forms. As such, it is 
able to resolve both the local and the global nonlinearity, and is only restricted in the 
sense that the total number of harmonics is small when compared to the peak of the 
wave spectrum. As a result, this solution will give satisfactory results provided the 
transfer of energy to either the high frequencies or the low frequencies is not too 
large. For example, if the local nonlinearity is very strong the double Fourier series 
solution will typically underestimate the maximum horizontal velocity arising close to 
the water surface (figure 2a); while if the global nonlinearity is excessive, this solution 
will typically underestimate the set-down beneath the wave group, and will therefore 
tend to overestimate the horizontal velocities arising close to the bottom boundary 
(figure 2c). In contrast, the local Fourier series solution is fitted to a small section of 
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the water surface profile within an individual window. As a result, it can successfully 
model the high frequency, or local nonlinearity, since this will determine the local 
curvature of the surface profile. However, given the input in any one window, it is 
unable to resolve the global nonlinearity, since the window length is significantly 
shorter than the length-scale appropriate to the set-down beneath the wave group. 
As a result, in those cases where the global nonlinearity is important, one would 
typically expect the local Fourier series solution to overestimate the velocities 
beneath the still water level (figures 2b and 2c). 

Concluding Remarks. 

The present paper has considered the description of highly nonlinear and 
unsteady (or transient) wave events, and has demonstrated that the nature of the 
nonlinear wave-wave interactions is strongly dependent upon the water depth. In 
particular, in deep water the exact numerical calculations indicate that the local 
nonlinear wave-wave interactions, corresponding to the frequency-sum terms, are 
dominant. However, as the water depth reduces the global nonlinearity, represented 
by the frequency-difference terms, become progressively more important. This result 
has important implications for the prediction of the underlying kinematics. For 
example, a double Fourier series solution (Baldock and Swan, 1994) is limited in 
respect of the total number of Fourier components which can practically be included; 
while the local Fourier series solution is unable to model the global non-linearity and 
thus becomes less effective in shallow water. However, despite these reservations, it 
should be stressed that these models will typically provide an improved description of 
the water particle kinematics when compared to the existing design solutions which 
either ignore the unsteadiness of the wave form, or the nonlinearity. In particular, the 
double Fourier series solution can accurately incorporate both the increased crest- 
trough asymmetry due to the local nonlinearity, and the set-down beneath the wave 
group due to the global nonlinearity, provided the extreme wave event is not too 
close to its breaking limit. 
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