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WAVE DYNAMICS AT COASTAL STRUCTURES: DEVELOPMENT OF 
A NUMERICAL MODEL FOR FREE SURFACE FLOW 
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Abstract 

The development of third generation wave models is needed for a detailed 
study of wave dynamics and impact at coastal structures. This would require the 
modelling of wave flows with high distortion of the free surface at confined 
boundaries. In our opinion, the Volume of fluid method, which uses concepts of 
local advection of fluid in free surface flow modelling, is the prime candidate for 
simulating realistic flows at sea defences and walls. In this paper, the numerical 
techniques for the simulation of waves with highly distorted water/air interfaces 
at a slope, using the volume of fluid method, are considered 

Introduction 

The volume of fluid method (VOF), originally developed by Hirt and 
Nichols [1], can be used for the study of transient waves within confined 
structures. The possibility for simulating the interaction (or interactions) of waves 
at structures with complex geometry leads to a more realistic modelling of wave 
impact at breakwaters and coastal defences. Furthermore, a stable numerical 
simulation of such wave dynamics can provide important information on impact 
pressures, jets and wave flows at specified locations of the coastal structure. 
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Thus, the numerical approach based on the VOF technique for the 
simulation of transient waves can lead to a good design for the construction of 
sea defences that sustain wave forces encountered during severe ocean, sea and 
atmospheric conditions. 

In previous years, two dimensional depth integrated models have been 
widely used in the study of wave action at vertical walls and slopes [2]. However 
they are limited by the fact that the free surface is assumed to remain a single 
valued function of space in all flow cases. Vertical fluid accelerations which are 
large in magnitude and short in duration, during wave impact, cannot be modelled 
and the free surface is implicitly maintained as a simply connected function of 
space. These first generation type of models are well established in coastal 
engineering. They can provide solutions to problems involving wave propagation 
at structures with simple geometry and in flow cases where breaking and 
overturning waves do not take place. They are also important for the study of 
solitary waves and can be used in the development of the next generation wave 
models. [3], [4] 

The speed and storage memory of modern computers have allowed 
scientists to develop the second and third generation wave models, and despite 
the task for a large amount of numerical operations, driven by new mathematical 
algorithms, the total CPU time used by such computers can be optimised and lead 
to an efficient study of wave dynamics at coastal structures. 

Second generation wave models based on Boundary Integral Methods 
(BIM) which were developed by Peregrine et al, and others [5], raised important 
questions on the physics of impact pressures at vertical walls. Peregrine showed 
the existence of large magnitude vertical accelerations of a wave front at impact 
and the possible mechanisms by which air bubble entrapment could be governed. 
The existence of short timed (~ 1msec) oscillatory impact pressure peaks at 
specific locations of the vertical wall suggests the existence of several types of 
wave interactions with the wall. Therefore, a detailed numerical investigation 
needs to be carried out. 

As a result, the third generation wave models which describe the dynamics 
of waves before, at and after impact have been developed, and recent simulations 
of breaking and overturning waves at vertical walls and slopes have been 
completed. [6]. 
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Mathematical formulation 

The general equations for fluid motion under transient conditions are 
given by the Navier-Stokes equations (NS). They incorporate fluid mass and 
momentum conservation and take into account of the external forces that are 
applied on the fluid body. 

In two dimensional cartesian coordinates, the NS equations are given by 
the following differential equations: 

Conservation of mass: 

dp | c{pu) | d{pv) = Q 

dt       dx dy 
(1) 

Conservation of momentum: 

and 

d( pu)    d(pu2)    d( puv) 

a dx dy PFX+Y a (2) 

d{pv)    4puv)    d{pv2) v doyr 
+ ; + 1 = pF + Z_> a dx. dy a (3) 

Fx and F represent the components of the resultant external force applied on the 
fluid in the x (horizontal) and y (vertical) directions respectively, a is the stress 
tensor and p is the density of the fluid, u and v are the velocity field components 
in the x and y directions respectively. / is the time variable. 

In the case of a Newtonian incompressible fluid the density p is 
constant in time and the stress tensor a is assumed to vary linearly with the fluid 
deformation rate. 

Thus: 
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0 
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(4) 
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where p is the reduced pressure and y is the kinematic viscosity. (All variables 
are used in (SI) units.). As a result, equations (1), (2) and (3) simplify and can be 
written in a compact vectorial form: 

divU = 0 (5) 
dU 

and — + (U • grad)U = F- grad(p) + yV2U (6) 
ot 

U and F are the velocity and external force vector fields respectively. 

Numerical Model 

Sabeur et al developed a new VOF based model in recent years [7]; this 
model discretises the NS equations in both time and space by means of finite 
difference techniques. Equations (5) and (6) can be written as follows: 

divU"+l = 0 (7) 
and 

U"+x -U' 
+ grad(p"+l) = Q" (8) 

St is the time step and Qn involves the finite difference advective terms and the 
external force F of the NS equations: 

Q = -(U-grad)U + yV2U + F (9) 

Various finite difference schemes can be implemented in the spatial 
discretisation of Q. As far as numerical stability and accuracy are concerned, each 
of the schemes have their advantages and drawbacks. The choice of the finite 
difference scheme greatly depends on the computing task required for the wave 
modelling case, ie, Number of wave propagation periods, wave length, boundary 
geometrical complexity. 

When combined, equations (7) and (8) lead to the Poisson equation (PE) 
for the pressures: 

VV+l=(/iv(| + 6") (10) 
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The volume of fluid method 

The study of wave motion with a highly distorted free surface needs the 
implementation of the VOF method which tracks the fluid locally in space. For a 
specified rectangular grid and time step, fluid fluxes are computed at each cell 
face. The fractional amount of fluid per cell is then determined by the net flux of 
fluid advected in both vertical and horizontal directions. 

The flux calculation leads to the update of the F function in time. That is 
the fractional volume of fluid at each cell centre point. Thus, a zero value of F in 
a cell means that it is empty while a unit value of F corresponds to a cell full of 
fluid. An intermediate value of F between zero and one normally represents a free 
surface cell, or indeed a trapped bubble. In strict numerical modelling terms, 
however, a true free surface cell is a cell that has at least one empty neighbouring 
cell. In figure 1 for example, the cell where F= 0.99 is not considered as a free 
surface cell because its four nearest neighbour cells are not empty. Therefore the 
PE is applied for such type of cell as if it was a full cell. 

<)<F<1 <KF<1 F=0 F=0 

0<F<1 

\ 
()<F<! 

(F=0.99) 
1KF<I F=0 

F=/ F=t 0<F<1      \ <XF<1 

F=/ F=] F=l 
"""fcpy^ 

Figure 1. Illustration on the type of fluid and void cells considered by the VOF 
wave model. 

In addition to the above, a numerical correction is performed on the F function 
values at the end of each computational cycle because, usually, a unit value of the 
F function (or, indeed a zero value) cannot be reached accurately by 
computational means. Instead, it is rounded to one (or zero) if it reaches a value 
of l+/-s. (or +/-e). In practice, and for an efficient modelling of the fluid 
interface, e should be no bigger than 0.00001. 
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Boundary conditions 

In the VOF method, pressure and velocity equations must be specified. 

Figure 2. A typical 2D VOF cell with six dynamic variables 

Figure 2 shows the location of the six variables used in a staggered finite 
difference grid and computed for each time level n. In the case of a full cell 
located inside the flow ( meaning, that the cell is totally surrounded by full cells), 
equations (8) and (10) are used to compute the velocities and pressures at time 
level n+1 respectively. Then, the F function value in the cell can be updated and 
the fluid advected in time. However, in the case of boundary cells, the 
computation of the pressures, the velocities and function F becomes tedious and 
time consuming. 

Boundary cells can be classified as follows: 

• Ordinary free surface cell 
• Non-ordinary free surface cell 
• Inflow cell 
• Full cell at a vertical/horizontal/sloped rigid boundary 

For each boundary cell, apart from the free surface cells, pseudo Poisson 
equations can be implemented by setting fluid mass conservation and virtual 
velocities inside local boundaries [8]. For example, rigid free-slip (or no slip) 
boundary conditions can be established for solid boundaries. The normal 
velocities to the boundaries and the gradient of the tangential velocities are set to 
zero. Parallel (or anti-parallel) and equal in magnitude virtual velocities are set for 
rigid free-slip (or no-slip) boundary conditions. 
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Free surface cells are provided with different pressure equations which involve 
the orientation and curvature of the interface, the nearest pressure inside the fluid, 
the local atmospheric pressure at the free surface and surface tension. The 
continuity of normal and tangential shear stresses is also enforced. A typical 
pressure equation at the free surface is given by: 

-/> + 2r —= -/,„ — + — (ii) 

supplemented with a condition on stresses at the interface: 

= 0 (12) 
fZJ.     cU,A 

7 + • 
V 3r,       &„ J 

cp and y/ are the free surface tension and curvature respectively. pAir and pAir are 
the reduced pressure and density of air respectively. Un and U, are the normal 
and tangential velocities to the free surface. The reduced pressure at the interface, 
p, is interpolated (or extrapolated) from the nearest dynamic pressure inside the 
fluid and normal to the interface. It can be located from the orientation of the free 
surface. Hence, the nearest interpolation dynamic pressure can be found either 
below or above the fluid interface, or can be located to the left or to the right of 
the interface. The orientation and curvature of the interface are computed by the F 
function local gradients corresponding to nearest neighbouring cells to the free 
surface. 

This approach for setting the boundary conditions at the free surface is 
used by most VOF methods, however the boundary conditions for cells which 
intercept the slope are not straightforward. 

In the new VOF wave model, the conditions on the orientation of the 
interface, given by the local gradients of F, are slightly modified at 
air/water/slope boundary cells. Virtual values of F, inside the sloped structures, 
are given a priori. Then, a stable air/water/slope interface can be modelled. 

Further numerical development of air/water/slope boundary conditions is 
needed. Applications of flows with the VOF method can be then extended to 
more complicated type of interface. For instance, in cases of floating and moving 
objects in fluids. 
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The simulation of progressive waves at sloped structures can be 
generated by a weakly reflective inflow boundary condition (WRIB). [6], [8]. 
Continuity of flow is enforced at the boundary and the free surface is assumed 
horizontal at all time. The velocity vector field U and water elevation rj at the 
inflow boundary must satisfy the following conditions: 

£/    rdU_dUj!L       dUin 

dt ck       dt ck 
and 

^L-C— = ^-_c^L (14) 
dt ck       dt ck 

C is the wave celerity. Uln and rjin are the inflow velocity field and water 
elevation (above or below still water level) respectively. For example, they take 
the following sinusoidal forms: 

Ha>     r -. 
Uin{x,y,t)=     . Jcosh(fcy)sin(fflO+7sinh(fey)cos(ft>f + foc)J      (15) 

and 

7;,,(*,0=ysin(fa:-«0 (16) 

h is the still water level (SWL), co the angular wave frequency, k the wave 
number and H the total wave amplitude, (j = V-l.) 

(The use of imaginary complex j in equation (15) should not be confused with 
grid cell coordinate].) 

Equations (13) and (14) are discretised forward in time and solved one time step 
earlier than the pressure and velocity equations. In this manner, the velocity field 
[/and elevation r/, can be provided for the computation of term Q, which appears 
in equation (8) at time level n. Water elevation n enables the computation of F at 
the inflow boundary free surface cell. At the free surface, F is given by: 

F = n + h-^Fudy0 (17) 

./V values of FtJ are found strictly equal to unity in a water column, /, which is 
adjacent to the inflow boundary column, ^-is the height of cell ij. 
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The combination of PE, the pseudo Poisson equations at the boundaries, 
and the free surface pressure equations leads to a system of M equations with M 
unknowns. M is the number of grid cells occupied by the fluid where F is greater 
than zero. Once the pressure equations are computed at a specified time level, the 
new velocity field is calculated, the F function is updated and the fluid advanced 
accordingly. The updated values of F provide the new value of M. 

In an early simulation of a dam-break flow by the VOF method, the 
Gauss-Seidel (GS) iterative scheme was used to solve the pressure equations. The 
GS algorithm requires a computational time that is proportional to A/2. For M 
smaller than -10000, the algorithm converged after approximately 1200 
iterations. 

Numerical simulations, results and discussion 

The speed of the pressure solver can be improved by adapting successive 
over-relaxation techniques (SOR) to the GS algorithm. However, as M gets larger 
with high resolution grids, or when diagonal dominance of the PE deteriorates, 
the SOR algorithm slows down and does not successfully converge. Powerful 
methods such as the Conjugate gradient (CG) or Lanczos (LZ), should be used to 
overcome this problem. The pressure field should be therefore represented in 
vectorial form and the structure of the corresponding Poisson matrix updated at 
each time step. Preliminary attempts to the matrix formulation, using parallel 
processors, [9] have been carried out and adapted to the VOF wave model. The 
simulation of a Dam-break flow showed similar results to the early calculations 
with the GS method. 

The simulation of progressive waves at a slope, using the WRIB 
condition, has been completed. The stability of the VOF model over several wave 
periods and for two cases of slopes, in a 4m deep and 35m long rectangular tank, 
has been achieved. The computation of the pressure equations was performed on 
a uniform 150x80 rectangular grid and the minimum time set to 0.001 sec. In this 
early simulation, surface tension was not included and the pressure at the 
interface was set to zero, (void representation). The wave characteristics for each 
cases of slopes are given in the table below: 

Wave parameters T (sec) H(m) SWL(m) Slope Surf^ 
1 st case 2.8 1. 1.5 1:3 0.3 
2nd case 2.8 1. 1.5 1:4 0.2 

Table 1. Wave characteristics used for model tests. 
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According to Battjes theory on breakers[10], the first and second wave 
test cases correspond to flows with spilling breakers. Spilling breakers occur with 
a surf similarity coefficient 4 smaller than 0.5, which is the case in our study. 
Large magnitude impact pressures are not encountered in such flows but 
distortions of the free surface with large velocity jets at air/water/slope 
boundaries do take place. In the first wave test case, shown in figure 3 for 
example, air entrapment at the slope region occurs at t=11.65 sec. Maximum 
velocity jets reaching approximately 5 m/s at the wave crest are calculated. The 
wave then spills along the slope, as shown in figure 4, and the front of the spill 
changes direction due to gravity. This change in the direction of motion causes 
the top of the wave to break and overturn, as shown in figure 5 at t=13.60 sec. 
Additional air bubbles are then trapped inside the fluid and lead to the formation 
of velocity jets that are parallel to the slope plane and persist in time. (Figure 6.) 
The kinetic energy of the wave flow region driven by the jets, decreases gradually 
in time and causes the collapse of part of the wave crest back onto the slope, as 
shown in figure 7. This feature of the model clearly illustrates the potential 
modelling of transient waves by the VOF technique. Similar observations to the 
above equally apply to the second wave test case. They are shown in figures 8-12. 

U1213MlB18       17UlB20212Z23MZa8eZ7 

X(m) 

Figure 3. t=l 1.65 sec, slope=l:3 

Figure 4. t=12.70 sec, slope=l:3 
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Figure 5. t=13.60 sec, slope=l:3 

Figure 6. t=14.19 sec, slope=l:3 

x(m) 

Figure 7. t=14.30 sec, slope=l:3 
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Figure 8. t=l 1.09 sec, slope=l:4 
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Figure 9. t=12.10 sec, slope=l:4 

Figure 10. t=12.40 sec, slope=l:4 

Figure 11. t=13.30 sec, slope=l:4 

Figure 12. t=13.60 sec, slope=l:4 
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Conclusion and recommendations 

This work clearly demonstrates the potential of the VOF implementation 
to the NS equation for the study of wave dynamics within confined domains, i.e. 
coastal structures. The newly developed model is capable of simulating the full 
process of wave interaction with structures. Wave impact generated from 
collapsing and plunging breakers can be equally modelled and dynamic pressures 
and jets predicted at specified locations of the structure. The model also provides 
more understanding in wave dynamics at coastal structures which in turn helps to 
promote improved design methods. 

In order to realise the full potential of VOF based wave models in 
coastal engineering , the following research and development is recommended: 

• Implementation of the Conjugate gradient or Lanczos algorithms in the 
pressure solver. 

• Development of boundary conditions at water/porous medium interfaces. 
• Implementation of the compressible NS equations for air entrapment 

dynamics study. 
• Extension of the theory to 3D for a better understanding of wave interactions. 
• Calibration and validation of numerical data with laboratory results. 
• Comparison of numerical predictions of wave dynamics with field data. 
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